首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   13篇
  298篇
  2023年   5篇
  2022年   11篇
  2021年   8篇
  2020年   12篇
  2019年   19篇
  2018年   7篇
  2017年   10篇
  2016年   13篇
  2015年   21篇
  2014年   12篇
  2013年   29篇
  2012年   23篇
  2011年   20篇
  2010年   19篇
  2009年   11篇
  2008年   19篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   13篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有298条查询结果,搜索用时 0 毫秒
281.
Monoclonal antibodies specific for biomarkers expressed on the surface of uveal melanoma (UM) cells would simplify the immune capture and genomic characterization of heterogeneous tumor cells originated from patient‐derived xenografts (PDXs). Antibodies against four independent tumor antigens were isolated by panning a nanobody synthetic library. Such antibodies enabled flow cytometry‐based sorting of distinct cell subpopulations from UM PDXs and to analyze their genomic features. The complexity and specificity of the biochemical and genomic biomarker combinations mirrored the UM tumor polyclonality. The data showed that MUC18 is highly and universally displayed on the surface of UM cells with different genetic background and consequently represents a reliable pan‐biomarker for their identification and purification. In contrast, the other three biomarkers were detected in very variable combinations in UM PDX cells. The availability of the identified nanobodies will be instrumental in developing clone‐specific drug evaluation and rational clinical strategies based on accurate genomic profiling.  相似文献   
282.
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.  相似文献   
283.
Necroptosis, a novel type of programmed cell death, is involved in ischemia–reperfusion-induced brain injury. Sirtuin 1 (Sirt1), as a well-known member of histone deacetylase class III, plays pivotal roles in inflammation, metabolism, and neuron loss in cerebral ischemia. We explored the relationship between Sirt1 and the necroptosis signaling pathway and its downstream events by administration of ex-527, as a selective and potent inhibitor of Sirt1, and necrostatin-1 (nec-1), as a necroptosis inhibitor, in an animal model of focal cerebral ischemia. Our data showed different patterns of sirt1 and necroptosis critical regulators, including receptor-interacting protein kinase 3 and mixed lineage kinase domain–like protein gene expressions in the prefrontal cortex and the hippocampus after ischemia–reperfusion. We found that ex-527 microinjection reduces the infarction volume of ischemic brains and improves the survival rate, but not stroke-associated neurological deficits. Additionally, treatment with ex-527 effectively abolished the elevation of the critical regulators of necroptosis, whereas necroptosis inhibition through nec-1 microinjection did not influence Sirt1 expression levels. Our data also demonstrated that the ex-527 relieves ischemia-induced perturbation of necroptosis-associated metabolic enzymes activity in downstream. This study provides a new approach to the possible neuroprotective potential of ex-527 orchestrated by necroptosis pathway inhibition to alleviate ischemia–reperfusion brain injury.  相似文献   
284.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   
285.
There is mounting evidence implicating the role of oxidative stress induced by reactive oxygen species (ROS) in neurodegenerative disease, including Alzheimer's disease. In this study we aimed to investigate the possible protective effect of chitooligosaccharide (COS), an antioxidant oligosaccharide, on hydrogen peroxide induced apoptosis in NGF-differentitated rat pheochromocytoma (PC12) cells. COS treatment reversed the decrease of cell viability induced by H(2)O(2) and this was associated with diminished intracellular ROS and decreased level of cytosolic Ca(2+). Additionally, COS contributed to up-regulation of Bcl-2, down regulation of Bax protein and reduction of cleaved Caspase-3 protein. COS treatment stabilized Nrf2 in nucleus and increased the Hsp70 level within cell while down-regulated Hsp90 expression. Moreover, COS could inhibit the phosphorylation of different mitogen activated protein kinases (MAPKs), whose aberrant phosphorylation has been implicated in AD. Our findings suggest that heat shock response and MAPK cascades are both involved in cell survival, and by concomitantly regulating both pathways, COS can be a promising agent in treating neurodegenerative diseases.  相似文献   
286.
It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.  相似文献   
287.
The brain-specific 42-kDa protein, p42IP4, contains a N-terminal zinc finger (ZF) motif and a tandem of two pleckstrin homology (PH) domains. p42IP4 binds in vitro the second messengers phosphatidylinositol(3,4,5)trisphosphate (PtdIns(3,4,5)P3) and inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). We observed by confocal microscopy in live HEK 293 cells the GFP-p42IP4, a chimera of human p42IP4 and green fluorescence protein (GFP). There, we studied the influence of thrombin, which raises Ins(1,3,4,5)P4, on membrane translocation of GFP-p42IP4, induced by epidermal growth factor (EGF). Thrombin in the presence of LiCl inhibited the EGF-induced membrane recruitment of GFP-p42IP4. In the absence of LiCl, thrombin weakened the EGF-mediated membrane recruitment of GFP-p42IP4. Furthermore, the participation of p42IP4 protein domains on the EGF-mediated membrane translocation was analyzed. We used several p42IP4 variants, in which one of the domains was deleted. Alternatively, single p42IP4 domain-GFP fusion proteins were generated. Only the p42IP4 variant lacking the ZF domain showed a very weak membrane translocation in response to EGF stimulation, but all the other p42IP4 variants did not translocate. Thus, we conclude that the combination of both PH domains with ZF is required for membrane translocation of p42IP4. Special issue dedicated to Dr. Bernd Hamprecht.  相似文献   
288.
The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.  相似文献   
289.
Sample handling and stability of hepatocyte growth factor in blood samples   总被引:2,自引:0,他引:2  
Nayeri F  Brudin L  Nilsson I  Forsberg P 《Cytokine》2002,19(4):201-205
As regards clinical studies performed on hepatocyte growth factor (HGF) during recent years, we have aimed in the present study to investigate the eventual differences in sample handling of this cytokine that might influence the results of serum concentrations. Venous blood from patients with current infectious diseases and controls was used in different sub-studies. Compared with samples separated within one hour, no significant changes in serum HGF levels were observed when whole blood stayed 4, or 24h at 6 degrees C before or 6h in room temperature after separation but HGF levels were significantly higher (P<0.01) when whole blood was kept at room temperature 4 and 24h before separation. Serum HGF was stable up to 20 freeze-thaw cycles. The serum concentrations of HGF were significantly higher than levels in the plasma (19%; P<0.05). A significant increase in serum HGF levels (12%, P<0.05) was observed after shaking the whole blood sample to a visible haemolysis, although the HGF concentration in blood cells was around half of that in serum. HGF tolerated storage at -70 degrees C for at least 4 months. We conclude that standardized methods in sample handling are important in the study of HGF concentrations in blood samples.  相似文献   
290.
The LINE-1 (L1) family of non-long terminal repeat retrotransposons is a major force shaping mammalian genomes, and its members can alter the genome in many ways. Mutational analyses have shown that coexpression of functional proteins encoded by the two L1-specific open reading frames, ORF1 and ORF2, is an essential prerequisite for the propagation of L1 elements in the genome. However, all efforts to identify ORF2-encoded proteins have failed so far. Here, applying a novel antibody we report the presence of proteins encoded by ORF2 in a subset of cellular components of human male gonads. Immunohistochemical analyses revealed coexpression of ORF1 and ORF2 in prespermatogonia of fetal testis, in germ cells of adult testis, and in distinct somatic cell types, such as Leydig, Sertoli, and vascular endothelial cells. Coexpression of both proteins in male germ cells is necessary for the observed genomic expansion of the number of L1 elements. Peptide mass fingerprinting analysis of a approximately 130-kDa polypeptide isolated from cultured human dermal microvascular endothelial cells led to the identification of ORF2-encoded peptides. An isolated approximately 45-kDa polypeptide was shown to derive from nonfunctional copies of ORF2 coding regions. The presence of both ORF1- and ORF2-encoded proteins in vascular endothelial cells and its apparent association with certain stages of differentiation and maturation of blood vessels may have functional relevance for vasculogenesis and/or angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号