首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   10篇
  2023年   1篇
  2022年   3篇
  2021年   14篇
  2020年   5篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   14篇
  2013年   16篇
  2012年   18篇
  2011年   19篇
  2010年   10篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   9篇
  2005年   12篇
  2004年   10篇
  2003年   12篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1993年   1篇
  1990年   1篇
  1978年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有220条查询结果,搜索用时 46 毫秒
51.
An electrochemical enzyme electrode for dopa and dopamine was developed via an easy and effective immobilization method. The enzyme tyrosinase was extracted from a plant source Amorphophallus companulatus and immobilized in a novel composite of two biopolymers: agarose and guar gum. This composite matrix-containing enzyme forms a self-adhering layer on the active surface of glassy carbon electrode, making it a selective and sensitive phenol sensor. Dopa and dopamine were determined by the direct reduction of biocatalytically liberated quinone species at -0.18V versus Ag/AgCl (3M KCl). The analytical characteristics of this sensor, including linear range, lower detection limit, pH, and storage stability, are described. It has reusability up to 15 cycles and a shelf life of more than 2 months.  相似文献   
52.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   
53.
Tight junction integral membrane proteins such as claudins and occludin are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related zonula occludens (ZO) proteins ZO-1, ZO-2, and ZO-3. All three ZO proteins have recently been inactivated in mice. Although ZO-3 knockout mice lack an obvious phenotype, animals deficient in ZO-1 or ZO-2 show early embryonic lethality. Here, we rescue the embryonic lethality of ZO-2 knockout mice by injecting ZO-2(−/−) embryonic stem (ES) cells into wild-type blastocysts to generate viable ZO-2 chimera. ZO-2(−/−) ES cells contribute extensively to different tissues of the chimera, consistent with an extraembryonic requirement for ZO-2 rather than a critical role in epiblast development. Adult chimera present a set of phenotypes in different organs. In particular, male ZO-2 chimera show reduced fertility and pathological changes in the testis. Lanthanum tracer experiments show a compromised blood–testis barrier. Expression levels of ZO-1, ZO-3, claudin-11, and occludin are not apparently affected. ZO-1 and occludin still localize to the blood–testis barrier region, but claudin-11 is less well restricted and the localization of connexin-43 is perturbed. The critical role of ZO-2 for male fertility and blood–testis barrier integrity thus provides a first example for a nonredundant role of an individual ZO protein in adult mice.  相似文献   
54.
Five new structural analogues of substituted-1H-quinolinones (19, 20, 23, 24, and 26) have been synthesized and evaluated for Staphylococcus aureus methionyl-tRNA synthetase enzyme inhibitory activity. These compounds were also tested against pathogens of six S. aureus, two Enterococcus faecalis, and one Enterococcus faecium. Among all the synthesized quinolinones, compound 20 displayed significant inhibitory activities in the strains of E. faecalis and E. faecium.  相似文献   
55.
ObjectiveTo examine the effect of ethnicity on the relation between tuberculosis and deprivation.DesignRetrospective ecological study comparing incidence of tuberculosis in white and south Asian residents of the 39 electoral wards in Birmingham with ethnic specific indices of deprivation.SettingBirmingham, 1989-93.Subjects1516 notified cases of tuberculosis.ResultsUnivariate analysis showed significant associations of tuberculosis rates for the whole population with several indices of deprivation (P<0.01) and with the proportion of the population of south Asian origin (P<0.01). All deprivation covariates were positively associated with each other but on multiple regression, higher level of overcrowding was independently associated with tuberculosis rates. For the white population, overcrowding was associated with tuberculosis rates independently of other variables (P=0.0036). No relation with deprivation was found for the south Asian population in either single or multivariable analyses.ConclusionsPoverty is significantly associated with tuberculosis in the white population, but no such relation exists for those of Asian ethnicity. These findings suggest that causal factors, and therefore potential interventions, will also differ by ethnic group.

Key messages

  • Previous studies in the United Kingdom have been unable to disentangle the effects of poverty and ethnicity on the incidence of tuberculosis
  • A strong relation was found between measures of poverty and tuberculosis in the white population
  • No relation between measures of poverty and tuberculosis was found in the Asian population
  • The only measure of poverty independently associated with tuberculosis in the white population is overcrowding
  • An increasing proportion of tuberculosis is occurring in Asian people and causal factors in this group are likely to be different from those in the white population
  相似文献   
56.
A plant growth‐promoting rhizobacterium, Pseudomonas aeruginosa strain IE‐6, and a fungal antagonist, Pochonia chlamydosporia, were tested for their ability to inhibit mycelial growth of root‐infecting fungi under laboratory conditions including Macrophomina phaseolina, Fusarium oxysporum, F. solani and Rhizoctonia solani. Biocontrol effectiveness of the bacterium and the fungus alone or in combination was also determined for the control of root‐infecting fungi under field conditions. In a dual‐culture plate assay, the colonies of P. chlamydosporia and P. aeruginosa met each other and no further growth of either organism occurred. Against M. phaseolina, F. solani and R. solani, an ethyl acetate extract of the culture filtrates of P. aeruginosa inhibited fungal growth greater than the hexane extract, but against F. oxysporum the hexane extract caused greater inhibition of fungal growth. By contrast, against M. phaseolina, F. oxysporum and F. solani, the hexane extract of P. chlamydosporia was more effective in the inhibition of fungal growth than the ethyl acetate fraction. Ethyl acetate extracts of P. aeruginosa at 1.0 mg/ml not only inhibited the radial colony growth of R. solani but also lysed the fungal mycelium. P. aeruginosa produced siderophores and hydrogen cyanide under laboratory conditions. Field experiments conducted in 1997 and repeated in 1998 revealed that Pochonia chlamydosporia and P. aeruginosa significantly suppressed the root‐infecting fungi M. phaseolina, F. oxysporum, F. solani and R. solani and that the combination of the two caused greater inhibition of the fungal pathogens than either alone. Application of P. chlamydosporia and P. aeruginosa as a soil drench also resulted in enhanced growth of tomato plants.  相似文献   
57.
The ethanolic extract of the fresh leaves of Calophyllum inophyllum afforded a pair of new epimers named as inophynone and isoinophynone. Their structures were elucidated with the aid of spectroscopic techniques. Some known constituents, cholesterol, friedelin, canophyllol and canophyllic acid, were also isolated from the same source.  相似文献   
58.
BackgroundThe proportion of enteric fever cases caused by Salmonella Paratyphi A is increasing and may increase further as we begin to introduce typhoid conjugate vaccines (TCVs). While numerous epidemiological and genomic studies have been conducted for S. Typhi, there are limited data describing the genomic epidemiology of S. Paratyphi A in especially in endemic settings, such as Bangladesh.Principal findingsWe conducted whole genome sequencing (WGS) of 67 S. Paratyphi A isolated between 2008 and 2018 from eight enteric disease surveillance sites across Bangladesh. We performed a detailed phylogenetic analysis of these sequence data incorporating sequences from 242 previously sequenced S. Paratyphi A isolates from a global collection and provided evidence of lineage migration from neighboring countries in South Asia. The data revealed that the majority of the Bangladeshi S. Paratyphi A isolates belonged to the dominant global lineage A (67.2%), while the remainder were either lineage C (19.4%) or F (13.4%). The population structure was relatively homogenous across the country as we did not find any significant lineage distributions between study sites inside or outside Dhaka. Our genomic data showed presence of single point mutations in gyrA gene either at codon 83 or 87 associated with decreased fluoroquinolone susceptibility in all Bangladeshi S. Paratyphi A isolates. Notably, we identified the pHCM2- like cryptic plasmid which was highly similar to S. Typhi plasmids circulating in Bangladesh and has not been previously identified in S. Paratyphi A organisms.SignificanceThis study demonstrates the utility of WGS to monitor the ongoing evolution of this emerging enteric pathogen. Novel insights into the genetic structure of S. Paratyphi A will aid the understanding of both regional and global circulation patterns of this emerging pathogen and provide a framework for future genomic surveillance studies.  相似文献   
59.
AIMS: To determine the influence of soil-borne fungus Trichoderma harzianum on the biocontrol performance of Pseudomonas fluorescens strain CHA0 and its 2,4-diacetylphloroglucinol (DAPG) overproducing derivative CHA0/pME3424 against Meloidogyne javanica. METHODS AND RESULTS: Amendment of the culture filtrate (CF) or methanol extract of the CF of a T. harzianum strain Th6 to P. fluorescens growth medium enhanced the production of nematicidal compound(s) by bacterial inoculants in vitro. In addition, bacteria overwhelmingly expressed phl'-'lacZ reporter gene when the medium was amended with CF of T. harzianum. Pseudomonas fluorescens and T. harzianum applied together in unsterilized sandy loam soil caused greater reduction in nematode population densities in tomato roots. CONCLUSIONS: Trichoderma harzianum improves root-knot nematode biocontrol by the antagonistic rhizobacterium P. fluorescens both in vitro and under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic effect of T. harzianum on the production of nematicidal compound(s) critical in biocontrol may improve the efficacy of biocontrol bacteria against plant-parasitic nematodes. Considering the inconsistent performance of the biocontrol agents under field conditions, application of a mixture of compatible T. harzianum and P. fluorescens would more closely mimic the natural situation and might broaden the spectrum of biocontrol activity with enhanced efficacy and reliability of control.  相似文献   
60.
Critical role of OX40 in CD28 and CD154-independent rejection   总被引:20,自引:0,他引:20  
Blocking both CD28 and CD154 costimulatory pathways can induce transplant tolerance in some, but not all, transplant models. Under stringent conditions, however, this protocol often completely fails to block allograft rejection. The precise nature of such CD28/CD154 blockade-resistant rejection is largely unknown. In the present study we developed a new model in which both CD28 and CD154, two conventional T cell costimulatory molecules, are genetically knocked out (i.e., CD28/CD154 double-knockout (DKO) mice) and used this model to examine the role of novel costimulatory molecule-inducible costimulator (ICOS), OX40, 4-1BB, and CD27 in mediating CD28/CD154-independent rejection. We found that CD28/CD154 DKO mice vigorously rejected fully MHC-mismatched DBA/2 skin allografts (mean survival time, 12 days; n = 6) compared with the wild-type controls (mean survival time, 8 days; n = 7). OX40 costimulation is critically important in skin allograft rejection in this model, as blocking the OX40/OX40 ligand pathway, but not the ICOS/ICOS ligand, 4-1BB/4-1BBL, or CD27/CD70 pathway, markedly prolonged skin allograft survival in CD28/CD154 DKO mice. The critical role of OX40 costimulation in CD28/CD154-independent rejection is further confirmed in wild-type C57BL/6 mice, as blocking the OX40/OX40 ligand pathway in combination with CD28/CD154 blockade induced long term skin allograft survival (>100 days; n = 5). Our study revealed a key cellular mechanism of rejection and identified OX40 as a critical alternative costimulatory molecule in CD28/CD154-independent rejection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号