首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   43篇
  541篇
  2023年   7篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   7篇
  2016年   19篇
  2015年   18篇
  2014年   17篇
  2013年   45篇
  2012年   33篇
  2011年   26篇
  2010年   20篇
  2009年   19篇
  2008年   35篇
  2007年   43篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   28篇
  2002年   21篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
11.
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.  相似文献   
12.
Summary The dnaP strains of Bacillus subtilis are altered in the initiation of DNA replication at high temperature (Riva et al., 1975). Fine mapping of the gene shows that it is located very close to the dnaF gene, described by Karamata and Gross (1970) and mapped by Love et al. (1976) in the polC region. The phenotype of both mutants is indistinguishable: the DNA synthesis stops at non permissive temperature after synthesizing an amount of DNA equivalent to the completion of the rounds of replication already initiated; at permissive temperature they are abnormally sensitive to MMS and are reduced in the ability to be transformed. Both mutants are to be considered as belonging to the dnaF locus.The dnaF gene is very close to the polC gene, which specifies the DNA polymerase III of B. subtilis. The DNA polymerase III of the dnaF mutants is not temperature sensitive in vitro, however, the level of this enzyme is lower by a factor of 4 or 5 in the dnaF mutants, at the permissive temperature. Following shift of dnaF cultures to the non permissive temperature, the level of DNA polymerase III activity specifically decreases further by a factor of at least 10 in the mutant, whereas the DNA polymerase I level is unaffected.The possible roles of the dnaF gene in the control of the cellular level of the DNA polymerase III, and the possibility of a regulatory role of DNA polymerase III in the initiation of DNA replication in bacteria are discussed.Abbreviations and symbols HPUra 6-(p-hydroxyphenylazo)-uracil; mic, minimum inhibitory concentration - MMS methyl-methanesufonate - Pol I Pol II and Pol III: DNA polymerase I, II and III respectively - PCMB parachloro-mercuri-benzoate  相似文献   
13.
Disruption of the apoptotic pathways may account for resistance to chemotherapy and treatment failures in human neoplastic disease. To further evaluate this issue, we isolated a HL-60 cell clone highly resistant to several drugs inducing apoptosis and to the differentiating chemical all-trans-retinoic acid (ATRA). The resistant clone displayed an activated phosphoinositide 3-kinase (PI3K)/AKT1 pathway, with levels of phosphatidylinositol (3,4,5) trisphosphate higher than the parental cells and increased levels of both Thr 308 and Ser 473 phosphorylated AKT1. In vitro AKT1 activity was elevated in resistant cells, whereas treatment of the resistant cell clone with two inhibitors of PI3K, wortmannin or Ly294002, strongly reduced phosphatidylinositol (3,4,5) trisphosphate levels and AKT1 activity. The inhibitors reversed resistance to drugs. Resistant cells overexpressing either dominant negative PI3K or dominant negative AKT1 became sensitive to drugs and ATRA. Conversely, if parental HL-60 cells were forced to overexpress an activated AKT1, they became resistant to apoptotic inducers and ATRA. There was a tight relationship between the activation of the PI3K/AKT1 axis and the expression of c-IAP1 and c-IAP2 proteins. Activation of the PI3K/AKT1 axis in resistant cells was dependent on enhanced tyrosine phosphorylation of the p85 regulatory subunit of PI3K, conceivably due to an autocrine insulin-like growth factor-I production. Our findings suggest that an up-regulation of the PI3K/AKT1 pathway might be one of the survival mechanisms responsible for the onset of resistance to chemotherapeutic and differentiating therapy in patients with acute leukemia.  相似文献   
14.
Chaperonin 60 is the prototypic molecular chaperone, an essential protein in eukaryotes and prokaryotes, whose sequence conservation provides an excellent basis for phylogenetic analysis. Escherichia coli chaperonin 60 (GroEL), the prototype of this family of proteins, has an established oligomeric‐structure‐based folding mechanism and a defined population of folding partners. However, there is a growing number of examples of chaperonin 60 proteins whose crystal structures and oligomeric composition are at variance with GroEL, suggesting that additional complexities in the protein‐folding function of this protein should be expected. In addition, many organisms have multiple chaperonin 60 proteins, some of which have lost their protein‐folding ability. It is emerging that this highly conserved protein has evolved a bewildering variety of additional biological functions – known as moonlighting functions – both within the cell and in the extracellular milieu. Indeed, in some organisms, it is these moonlighting functions that have been left after the loss of the protein‐folding activity. This highlights the major paradox in the biology of chaperonin 60. This article reviews the relationship between the folding and non‐folding (moonlighting) activities of the chaperonin 60 family and discusses current knowledge on their molecular evolution focusing on protein domains involved in the non‐folding chaperonin functions in an attempt to understand the emerging biology of this evolutionarily ancient protein family.  相似文献   
15.
We have investigated the effect of hypothalamo-pituitary disconnection in the rat on the growth hormone (GH) responsiveness to human pancreatic GH-releasing factor (hpGRF). Adult female rats, sham-operated (sham-op) or bearing a complete mechanical ablation of the mediobasal hypothalamus (MBH-A) were challenged, while under urethane anesthesia, with hpGRF-40 (20,100,500 ng/rat i.v.) at different time intervals after surgery. In sham-op rats only 500 ng/rat of hpGRF-40 stimulated GH release, while in 1-and 7-day MBH-A rats the stimulation also occurred with the lower hpGRF doses and the rise in plasma GH was greater than in sham-op controls. Twenty-one and 42 days after the placing of the lesions the GH response to hpGRF-40 was still present at the 500 ng/rat dose, though it was smaller than in sham-op controls. Evaluation of pituitary GH content demonstrated a progressive and rapid decline starting the first day after the placing of the lesions. These data indicate that GH responsiveness to hpGRF is: 1) enhanced in the anterior pituitary shortly after hypothalamo-pituitary disconnection and, 2) despite a striking reduction of the pituitary GH stores, it is maintained after these lesions.The physiologic growth hormone (GH) releaser in the rat is GH-releasing factor and, recently, a group of peptides has been characterized from human pancreatic tumors (hpGRFs) (1,2) which are potent and specific GH-releasers in both animals (3) and man (4). The availability of these peptides, which show a high degree of homology with the physiologic rat hypothalamic GRF (5), offers the unique opportunity to assess somatotrope responsiveness to GRF molecules in rats with hypothalamo-pituitary disconnection.In this study we have first evaluated the GH pituitary responsiveness to increasing doses of hpGRF-40 in rats following mechanical ablation of the mediobasal hypothalamus (6). These rats, by definition, lack the effect of both central nervous system (CNS) inhibitory (e.g. somatostatin) and stimulatory (e.g. GRF) influences to GH release. With the aim to ascertain how the lack of these two opposing inputs reflects on the secretory capacity of the somatotropes, we also investigated the GH response to hpGRF-40 at different time intervals after the lesioning. In a study in rats with electrolytic lesions of the ventromedial-arcuate region of the hypothalamus Tannenbaum et al (7) had shown persistence of the GH response to huge doses of a hpGRF analog.  相似文献   
16.
Suspension cultured cells of six rice cultivars differing in their sensitivity to blast were treated with mycelial wall hydrolysates prepared from seven isolates belonging to different Pyricularia grisea lineages. Soon after elicitor addition, rice cells produced significant amounts of superoxide anion, which was rapidly converted into diffusible peroxide. Maximal effects were achieved at 50 mg L-1 elicitor. In all cases, a 7 to 13-fold increase in the basal rate of reactive oxygen species production was found. Neither differential effects among strains nor clear relationships between lineage and the resulting oxidative burst were evident. Interestingly, a good correlation was found between basal (and elicited) levels of peroxide generation and the overall tolerance of rice cultivars to the pathogen. About two days after elicitation, cell death occurred proportional to the amount of hydrogen peroxide released. Peroxide was required to trigger loss of cell viability, but the latter was not due to a direct toxic effect, suggesting the induction of programmed cell death. Results represent the first data aimed to develop in vitro tests for pathogenicity prediction of Italian blast lineages toward rice cultivars.  相似文献   
17.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   
18.
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation).  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号