首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   94篇
  2023年   5篇
  2021年   14篇
  2020年   8篇
  2019年   14篇
  2018年   7篇
  2017年   7篇
  2016年   15篇
  2015年   17篇
  2014年   29篇
  2013年   26篇
  2012年   28篇
  2011年   30篇
  2010年   17篇
  2009年   20篇
  2008年   30篇
  2007年   35篇
  2006年   28篇
  2005年   17篇
  2004年   19篇
  2003年   8篇
  2002年   7篇
  2001年   9篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1992年   13篇
  1991年   5篇
  1990年   12篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1974年   2篇
  1973年   5篇
  1969年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
91.

Background  

Millions of single nucleotide polymorphisms have been identified as a result of the human genome project and the rapid advance of high throughput genotyping technology. Genetic association studies, such as recent genome-wide association studies (GWAS), have provided a springboard for exploring the contribution of inherited genetic variation and gene/environment interactions in relation to disease. Given the capacity of such studies to produce a plethora of information that may then be described in a number of publications, selecting possible disease susceptibility genes and identifying related modifiable risk factors is a major challenge. A Web-based application for finding evidence of such relationships is key to the development of follow-up studies and evidence for translational research.  相似文献   
92.

Background  

The strength of selective constraints operating on amino acid sites of proteins has a multifactorial nature. In fact, amino acid sites within proteins coevolve due to their functional and/or structural relationships. Different methods have been developed that attempt to account for the evolutionary dependencies between amino acid sites. Researchers have invested a significant effort to increase the sensitivity of such methods. However, the difficulty in disentangling functional co-dependencies from historical covariation has fuelled the scepticism over their power to detect biologically meaningful results. In addition, the biological parameters connecting linear sequence evolution to structure evolution remain elusive. For these reasons, most of the evolutionary studies aimed at identifying functional dependencies among protein domains have focused on the structural properties of proteins rather than on the information extracted from linear multiple sequence alignments (MSA). Non-parametric methods to detect coevolution have been reported to be especially susceptible to produce false positive results based on the properties of MSAs. However, no formal statistical analysis has been performed to definitively test the differential effects of these properties on the sensitivity of such methods.  相似文献   
93.
94.
The assignment of the absolute configuration of novel anti-inflammatory pyrrole derivatives has been accomplished by a combined strategy based on independent physical methods. The key step of our stereochemical characterization approach is the production at mg-scale of enantiomerically pure forms by HPLC on Chiralpak IA stationary phase.  相似文献   
95.
Plantago lanceolata produces small actinomorphic (radially symmetric), wind-pollinated flowers that have evolved from a zygomorphic, biotically pollinated ancestral state. To understand the developmental mechanisms that might underlie this change in flower shape, and associated change in pollination syndrome, we analyzed the role of CYC-like genes in P. lanceolata. Related zygomorphic species have two CYC-like genes that are expressed asymmetrically in the dorsal region of young floral meristems and in developing flowers, where they affect the rate of development of dorsal petals and stamens. Plantago has a single CYC-like gene (PlCYC) that is not expressed in early floral meristems and there is no apparent asymmetry in the pattern of PlCYC expression during later flower development. Thus, the evolution of actinomorphy in Plantago correlates with loss of dorsal-specific CYC-like gene function. PlCYC is expressed in the inflorescence stem, in pedicels, and relatively late in stamen development, suggesting a novel role for PlCYC in compacting the inflorescence and retarding stamen elongation in this wind pollinated species.  相似文献   
96.
While many genetic alterations have been identified in melanoma, the relevant molecular events that contribute to disease progression are poorly understood. Most primary human melanomas exhibit loss of expression of the CDKN2A locus in addition to activation of the canonical mitogen‐activated protein kinase signaling pathway. In this study, we used a Cdkn2a‐deficient mouse melanocyte cell line to screen for secondary genetic events in melanoma tumor progression. Upon investigation, intrachromosomal gene amplification of Met, a receptor tyrosine kinase implicated in melanoma progression, was identified in Cdkn2a‐deficient tumors. RNA interference targeting Met in these tumor cells resulted in a significant delay in tumor growth in vivo compared with the control cells. MET expression is rarely detected in primary human melanoma but is frequently observed in metastatic disease. This study validates a role for Met activation in melanoma tumor progression in the context of Cdkn2a deficiency.  相似文献   
97.

Background

Chronic Chagas disease presents several different clinical manifestations ranging from asymptomatic to severe cardiac and/or digestive clinical forms. Several studies have demonstrated that immunoregulatory mechanisms are important processes for the control of the intense immune activity observed in the chronic phase. T cells play a critical role in parasite specific and non-specific immune response elicited by the host against Trypanosoma cruzi. Specifically, memory T cells, which are basically classified as central and effector memory cells, might have a distinct migratory activity, role and function during the human Chagas disease.

Methodology/Principal Findings

Based on the hypothesis that the disease severity in humans is correlated to the quality of immune responses against T. cruzi, we evaluated the memory profile of peripheral CD4+ and CD8+ T lymphocytes as well as its cytokine secretion before and after in vitro antigenic stimulation. We evaluated cellular response from non-infected individuals (NI), patients with indeterminate (IND) or cardiac (CARD) clinical forms of Chagas disease. The expression of CD45RA, CD45RO and CCR7 surface molecules was determined on CD4+ and CD8+ T lymphocytes; the pattern of intracellular cytokines (IFN-γ, IL-10) synthesized by naive and memory cells was determined by flow cytometry. Our results revealed that IND and CARD patients have relatively lower percentages of naive (CD45RAhigh) CD4+ and CD8+ T cells. However, statistical analysis of ex-vivo profiles of CD4+ T cells showed that IND have lower percentage of CD45RAhigh in relation to non-infected individuals, but not in relation to CARD. Elevated percentages of memory (CD45ROhigh) CD4+ T cells were also demonstrated in infected individuals, although statistically significant differences were only observed between IND and NI groups. Furthermore, when we analyzed the profile of secreted cytokines, we observed that CARD patients presented a significantly higher percentage of CD8+CD45RAhigh IFN-γ-producing cells in control cultures and after antigen pulsing with soluble epimastigote antigens.

Conclusions

Based on a correlation between the frequency of IFN-γ producing CD8+ T cells in the T cell memory compartment and the chronic chagasic myocarditis, we propose that memory T cells can be involved in the induction of the development of the severe clinical forms of the Chagas disease by mechanisms modulated by IFN-γ. Furthermore, we showed that individuals from IND group presented more TCM CD4+ T cells, which may induce a regulatory mechanism to protect the host against the exacerbated inflammatory response elicited by the infection.  相似文献   
98.

Background

Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known.

Methodology/Principal Findings

Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity.

Conclusions/Significance

We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected by heavy metal poisoning in humans. We also showed that coelomocytes are involved in detoxification of heavy metals. Therefore, the HMT-1-dependent detoxification pathway and coelomocytes of C. elegans emerge as novel models for studies of heavy metal-promoted diseases.  相似文献   
99.
100.
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号