首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   22篇
  2023年   3篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   17篇
  2012年   17篇
  2011年   13篇
  2010年   7篇
  2009年   12篇
  2008年   17篇
  2007年   20篇
  2006年   14篇
  2005年   6篇
  2004年   10篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有217条查询结果,搜索用时 578 毫秒
91.
Ligand-gated ion channels are transmembrane proteins that respond to a variety of transmitters, including acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate [1 and 2]. These proteins play key roles in neurotransmission and are typically found in the nervous system and at neuromuscular junctions [3]. Recently, acetylcholine receptor family members also have been found in nonneuronal cells, including macrophages [4], keratinocytes [5], bronchial epithelial cells [5], and endothelial cells of arteries [6]. The function of these channels in nonneuronal cells in mammals remains to be elucidated, though it has been shown that the acetylcholine receptor alpha7 subunit is required for acetylcholine-mediated inhibition of tumor necrosis factor release by activated macrophages [4]. We show that cup-4, a gene required for efficient endocytosis of fluids by C. elegans coelomocytes, encodes a protein that is homologous to ligand-gated ion channels, with the highest degree of similarity to nicotinic acetylcholine receptors. Worms lacking CUP-4 have reduced phosphatidylinositol 4,5-bisphosphate levels at the plasma membrane, suggesting that CUP-4 regulates endocytosis through modulation of phospholipase C activity.  相似文献   
92.
Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the “neck filaments” that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p.  相似文献   
93.
Localization and possible functions of Drosophila septins.   总被引:8,自引:3,他引:5       下载免费PDF全文
The septins are a family of homologous proteins that were originally identified in Saccharomyces cerevisiae, where they are associated with the "neck filaments" and are involved in cytokinesis and other aspects of the organization of the cell surface. We report here the identification of Sep1, a Drosophila melanogaster septin, based on its homology to the yeast septins. The predicted Sep1 amino acid sequence is 35-42% identical to the known S. cerevisiae septins; 52% identical to Pnut, a second D. melanogaster septin; and 53-73% identical to the known mammalian septins. Sep1-specific antibodies have been used to characterize its expression and localization. The protein is concentrated at the leading edge of the cleavage furrows of dividing cells and cellularizing embryos, suggesting a role in furrow formation. Other aspects of Sep1 localization suggest roles not directly related to cytokinesis. For example, Sep1 exhibits orderly, cell-cycle-coordinated rearrangements within the cortex of syncytial blastoderm embryos and in the cells of post-gastrulation embryos; Sep1 is also concentrated at the leading edge of the epithelium during dorsal closure in the embryo, in the neurons of the embryonic nervous system, and at the baso-lateral surfaces of ovarian follicle cells. The distribution of Sep1 typically overlaps, but is distinct from, that of actin. Both immunolocalization and biochemical experiments show that Sep1 is intimately associated with Pnut, suggesting that the Drosophila septins, like those in yeast, function as part of a complex.  相似文献   
94.
The combined effects of ozone (O3) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal‐filtered air, CF, and non‐filtered air +40 ppb, E‐O3) and soil water stress (well‐watered, WW, and mild drought, MD, one‐third irrigation) for 96 days. Consistent with light‐saturated photosynthesis (Asat), intercellular CO2 concentration (Ci) and chlorophyll content, isoprene emission depended on drought, O3, leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (?40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th–15th from the apex) than in upper leaves (6th–8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up‐scaled to the entire‐plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E‐O3. Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.  相似文献   
95.

Background

Dengue is a mosquito-borne viral disease caused by the four dengue viruses (DENV-1 to 4) that can also be transmitted by blood transfusion and organ transplantation. The distribution of DENV in the components of blood from infected donors is poorly understood.

Methods

We used an in-house TaqMan qRT-PCR assay to test residual samples of plasma, cellular components of whole blood (CCWB), serum and clot specimens from the same collection from blood donors who were DENV-RNA-reactive in a parallel blood safety study. To assess whether DENV RNA detected by TaqMan was associated with infectious virus, DENV infectivity in available samples was determined by culture in mosquito cells.

Results

DENV RNA was detected by TaqMan in all tested blood components, albeit more consistently in the cellular components; 78.8% of CCWB, 73.3% of clots, 86.7% of sera and 41.8% of plasma samples. DENV-1 was detected in 48 plasma and 97 CCWB samples while DENV-4 was detected in 21 plasma and 31 CCWB samples. In mosquito cell cultures, 29/111 (26.1%) plasma and 32/97 (32.7%) CCWB samples were infectious. A subset of samples from 29 donors was separately analyzed to compare DENV viral loads in the available blood components. DENV viral loads did not differ significantly between components and ranged from 3–8 log10 PCR-detectable units/ml.

Conclusions

DENV was present in all tested components from most donors, and viral RNA was not preferentially distributed in any of the tested components. Infectious DENV was also present in similar proportions in cultured plasma, clot and CCWB samples, indicating that these components may serve as a resource when sample sizes are limited. However, these results suggest that the sensitivity of the nucleic acid tests (NAT) for these viruses would not be improved by testing whole blood or components other than plasma.  相似文献   
96.
97.
Jaeger, C. H., Goeschl, J. D., Magnuson, C. E., Fares, Y. and Strain, B. R. 1988. Short-term responses of phloem transport to mechanical perturbation. - Physiol. Plant. 72: 588–594.
Phloem transport was monitored using a continuous stream of 11CO2-labelled air administered to one leaf while gamma detectors measured 11C activity at intervals along the stem. The effect of gentle, non-injurious mechanical perturbation on phloem transport was tested in cotton ( Gossypium hirsutum L. cv. Stoneville 213). Mechanical stimuli such as shaking, localized vibration and gentle massage were applied while the plants were at isotope equilibrium. Localized phloem blockages were observed within 1–2 min of the stimuli. The blockages lasted from 6–55 min and full recovery of transport required 20–175 min. The effect of preconditioning to mechanical perturbation on phloem transport was tested in bush beans ( Phaseolus vulgaris L. cv. Cherokee Bush). Preconditioning of a bean seedling to gentle stem massage resulted in a shorter blockage response and quicker transport recovery period when the seedling was massaged during a 11C tracer experiment compared to a control seedling. These results indicate that measurements of phloem transport on recently disturbed plants will probably show depressed phloem transport velocities. Measurements should be made after at least a 24-h disturbance-free recovery period.  相似文献   
98.
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.  相似文献   
99.
Pyrosequencing-based 16S rRNA gene surveys are increasingly utilized to study highly diverse bacterial communities, with special emphasis on utilizing the large number of sequences obtained (tens to hundreds of thousands) for species richness estimation. However, it is not yet clear how the number of operational taxonomic units (OTUs) and, hence, species richness estimates determined using shorter fragments at different taxonomic cutoffs correlates with the number of OTUs assigned using longer, nearly complete 16S rRNA gene fragments. We constructed a 16S rRNA clone library from an undisturbed tallgrass prairie soil (1,132 clones) and used it to compare species richness estimates obtained using eight pyrosequencing candidate fragments (99 to 361 bp in length) and the nearly full-length fragment. Fragments encompassing the V1 and V2 (V1+V2) region and the V6 region (generated using primer pairs 8F-338R and 967F-1046R) overestimated species richness; fragments encompassing the V3, V7, and V7+V8 hypervariable regions (generated using primer pairs 338F-530R, 1046F-1220R, and 1046F-1392R) underestimated species richness; and fragments encompassing the V4, V5+V6, and V6+V7 regions (generated using primer pairs 530F-805R, 805F-1046R, and 967F-1220R) provided estimates comparable to those obtained with the nearly full-length fragment. These patterns were observed regardless of the alignment method utilized or the parameter used to gauge comparative levels of species richness (number of OTUs observed, slope of scatter plots of pairwise distance values for short and nearly complete fragments, and nonparametric and parametric species richness estimates). Similar results were obtained when analyzing three other datasets derived from soil, adult Zebrafish gut, and basaltic formations in the East Pacific Rise. Regression analysis indicated that these observed discrepancies in species richness estimates within various regions could readily be explained by the proportions of hypervariable, variable, and conserved base pairs within an examined fragment.Culture-independent 16S rRNA gene surveys are now routinely utilized to examine the microbial diversity in various environmental habitats. However, in surveys of highly diverse ecosystems, the size of clone libraries typically constructed (100 to 500 clones) allows for the identification only of members of the community that are present in high abundance (2, 13, 14, 17, 24, 51). In addition to the failure to detect the rare members of the ecosystem, these relatively small datasets provide inaccurate estimates when used for computing species richness within an ecosystem. Regardless of the approach utilized to estimate species richness, the estimates obtained are highly dependent on sample size, and smaller datasets typically result in the underestimation of species richness (14, 44, 47, 55).The use of a pyrosequencing-based approach (40) in 16S gene-based diversity surveys promises to overcome both of the above-mentioned problems associated with inadequate sampling. The large number of 16S rRNA gene sequences produced (hundreds of thousands) allows access to rare members of the community (25; J. M. Tiedje, presented at the 108th General Meeting of the American Society for Microbiology, Boston, MA, 2008), as well as a relatively more accurate estimation of species richness. However, with the introduction of this new technology, it is necessary to correlate the results obtained from newer pyrosequencing-based surveys to the extensive collection of longer, capillary sequence-generated 16S rRNA gene sequences that has been deposited in public databases during the last 2 decades. Several recent studies have examined the utility of pyrosequencing fragments in providing an accurate survey of overall community structure (36) and investigated the ability of various fragments spanning the 16S rRNA gene to accurately predict the phylogenetic affiliation of pyrosequencing-generated fragments at various taxonomic cutoffs (35, 54). As such, these admirable efforts gave useful insights into the advantages and limitations of the pyrosequencing approach in 16S-based community surveys, pinpointed specific regions that provide better phylogenetic resolution than other pyrosequencing-generated regions, and provided a quantitative assessment of binning accuracy at various empirical cutoffs.However, while issues regarding correlating phylogenies of shorter and longer fragments are actively being addressed, efforts to calibrate species richness data obtained from various pyrosequencing fragments at various taxonomic cutoffs to estimates obtained using longer 16S rRNA gene fragments are still lacking. It is unclear how pairwise distances and, hence, operational taxonomic unit (OTU) assignments and species richness estimates computed using various shorter fragments spanning various regions of the 16S rRNA gene will correlate to pairwise distances computed using the nearly complete 16S rRNA gene. Elucidating such differences between shorter and nearly complete fragments, as well as between shorter fragments representing different regions in the 16S rRNA gene, is absolutely necessary for accurate meta-analysis of species richness in previously published and future datasets constructed using various sequencing approaches.Here, we constructed, sequenced, and analyzed a 16S rRNA library of 1,132 clones generated from an undisturbed tallgrass prairie soil in central Oklahoma and compared the numbers of OTUs and species richness values obtained using the full-length data sets (with and without the application of the Lane mask filter that excludes hypervariable regions from the phylogenetic analysis) (32) and fragments simulating pyrosequencing output generated by clipping where known conserved bacterial primers are encountered in the 16S rRNA gene. The lengths of the chosen simulated-pyrosequencing fragments represent amplicons that have been generated using the original GS20 pyrosequencing platform (≈100 bp) (25, 44, 48), similar to those currently being generated using the GS FLX pyrosequencing platform (≈250 bp) (1, 20, 35) or amplicons produced using the anticipated increase in the new GS XLR pyrosequencing platform (>250 bp). We show that the choice of the pyrosequenced fragment could indeed impact the number of OTUs calculated at different taxonomic cutoffs, with some fragments underestimating and others overestimating such parameters compared to the results with longer, nearly complete 16S rRNA gene fragments. We also show that even more marked differences could be encountered when comparing two pyrosequencing fragments within the same molecule. Further, we established a regression analysis that explains the nature of the observed discrepancies using the proportions of the hypervariable, variable, and conserved bases within fragments.  相似文献   
100.

Background  

CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号