首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   22篇
  203篇
  2023年   3篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   7篇
  2014年   8篇
  2013年   17篇
  2012年   15篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   15篇
  2007年   19篇
  2006年   14篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有203条查询结果,搜索用时 0 毫秒
1.
This study evaluated the ability of gamma-aminobutyric acid (GABA), baclofen, monovalent anions, divalent cations, and various combinations thereof to protect solubilized benzodiazepine (BZ) receptors of types 1 and 2, when contained together on the complex, against heat inactivation. Neither anions, cations, nor GABA alone provided significant protection of solubilized BZ receptors against heat, but inclusion of monovalent anions or divalent cations together with 500 microM GABA did afford protection. Monovalent anions combined with GABA (500 microM) provided 50% to full protection. Divalent cations, such as CaCl2 (2.5 mM) or MgCl2 (2.5 mM) in the presence of GABA (500 microM) yielded 45% and 24% protection, respectively. Other divalent cations tested (Zn2+, Hg2+, Co2+, and Ni2+) were poor protectors, even when combined with GABA. Monovalent anions (200 mM NaCl) and divalent cations (5 mM CaCl2) when tested together provided no protection. Similarly, baclofen (the GABA-B agonist) provided no protection, either alone or together with anions or divalent cations. These results indicate that the independent but interacting recognition sites of GABA, BZ, anions, and divalent cations, previously detected in the membrane-bound state, are retained in the solubilized state.  相似文献   
2.
Abstract

Habitat associations and communities of breeding birds were studied for the first time in a semi-arid region in the southern highlands of Jordan. Birds were censused and habitat variables estimated in different habitat types, ranging from steppe to open, Mediterranean-type woodland. The variation of abundance of several species was explained adequately with multiple regressions of up to five habitat variables. A distinct bird community was identified by using principal component analysis on the highland plateau (e.g. Short-toed Lark, Isabelline Wheatear), in steppe habitats modified by dry farming methods. The plateau was identified as a transition zone of Palaeoxeric/Turkestanian and Mediterranean faunal types. The remainding cluster included species of diverse origins (Palaearctic, Mediterranean, Saharo-Sindian, Afrotropical and others). It was subdivided into three bird assemblages with preferences for following habitat types: Mediterranean-type open woodlands (e.g. Syrian Serin), dwarf shrub formations of higher altitudes (e.g. Spectacled Warbler), dwarf shrub formations, including clearings and the edge of woodlands at lower altitudes (e.g. Scrub Warbler).  相似文献   
3.
Immobilization of uranium in groundwater can be achieved through microbial reduction of U(VI) to U(IV) upon electron donor addition. Microbial community structure was analyzed in ethanol-biostimulated and control sediments from a high-nitrate (>130 mM), low-pH, uranium-contaminated site in Oak Ridge, TN. Analysis of small subunit (SSU) rRNA gene clone libraries and polar lipid fatty acids from sediments revealed that biostimulation resulted in a general decrease in bacterial diversity. Specifically, biostimulation resulted in an increase in the proportion of Betaproteobacteria (10% of total clones in the control sediment versus 50 and 79% in biostimulated sediments) and a decrease in the proportion of Gammaproteobacteria and Acidobacteria. Clone libraries derived from dissimilatory nitrite reductase genes (nirK and nirS) were also dominated by clones related to Betaproteobacteria (98% and 85% of total nirK and nirS clones, respectively). Within the nirK libraries, one clone sequence made up 59 and 76% of sequences from biostimulated sediments but only made up 10% of the control nirK library. Phylogenetic analysis of SSU rRNA and nirK gene sequences from denitrifying pure cultures isolated from the site indicate that all belong to a Castellaniella species; nearly identical sequences also constituted the majority of biostimulated SSU rRNA and nirK clone libraries. Thus, by combining culture-independent with culture-dependent techniques, we were able to link SSU rRNA clone library information with nirK sequence data and conclude that a potentially novel Castellaniella species is important for in situ nitrate removal at this site.  相似文献   
4.
5.
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.  相似文献   
6.
Capsule: Grazing by livestock can have complex effects on drivers of population change in the Clamorous Reed Warbler Acrocephalus stentoreus and Dead Sea Sparrow Passer moabiticus.

Aims: To investigate the effect on two specialist bird species on wetland degradation in the Jordan Valley.

Methods: The direct and indirect effects of grazing on the probability of occurrences of two specialist bird species, Clamorous Reed Warbler A. stentoreus and Dead Sea Sparrow P. moabiticus, were analysed during the breeding season at the patch scale, using path analysis.

Results: Tamarix shrub density was a strong predictor for the presence of both species. Grazing had a negative total effect on both; a significant indirect effect on Dead Sea Sparrow via its impact on the mean height of shrubs, and a significant, negative indirect effect on Clamorous Reed Warbler by reducing reed cover. Intensive grazing and browsing by livestock including goats, sheep and camels, apparently had a negative effect on the overall density of native Tamarix shrubs, while promoting encroachment by invasive Prosopis juliflora.

Conclusion: This may be part of a long-term cascade leading to an ecological transition and loss of important wetland habitats in the arid Jordan Valley.  相似文献   
7.
8.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common α and a hormone specific β subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the α and β subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (α, FSHβ and hCGβ) asparagine-linked (N-linked) oligosaccharides. CGβ subunit is distinguished among the β subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure–function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   
9.
The microeukaryotic community in Zodletone Spring, a predominantly anaerobic sulfide and sulfur-rich spring, was examined using an 18S rRNA gene cloning and sequencing approach. The majority of the 288 clones sequenced from three different locations at Zodletone Spring belonged to the Stramenopiles, Alveolata, and Fungi, with members of the phylum Cercozoa, order Diplomonadida, and family Jakobidae representing a minor fraction of the clone library. No sequences suggesting the presence of novel kingdom level diversity were detected in any of the three libraries. A large fraction of stramenopile clones encountered were monophyletic with either members of the genus Cafeteria (order Bicosoecida) or members of the order Labyrinthulida (slime nets), both of which have so far been encountered mainly in marine habitats. The majority of the observed fungal clone sequences belonged to the ascomycetous yeasts (order Saccharomycetales), were closely related to yeast genera within the Hymenobasidiomycetes (phylum Basidiomycetes), or formed a novel fungal lineage with several previously published or database-deposited clones. To determine whether the unexpected abundance of fungal sequences in Zodletone Spring clone libraries represents a general pattern in anaerobic habitats, we generated three clone libraries from three different anaerobic settings (anaerobic sewage digester, pond sediment, and hydrocarbon-exposed aquifer sediments) and partially sequenced 210 of these clones. Phylogenetic analysis indicated that clone sequences belonging to the kingdom Fungi represent a significant fraction of all three clone libraries, an observation confirmed by phospholipid fatty acid and ergosterol analysis. Overall, this work reveals an unexpected abundance of Fungi in anaerobic habitats, describes a novel, yet-uncultured group of Fungi that appears to be widespread in anaerobic habitats, and indicates that several of the previously considered marine protists could also occur in nonmarine habitats.  相似文献   
10.
Chaperonin 60 is the prototypic molecular chaperone, an essential protein in eukaryotes and prokaryotes, whose sequence conservation provides an excellent basis for phylogenetic analysis. Escherichia coli chaperonin 60 (GroEL), the prototype of this family of proteins, has an established oligomeric‐structure‐based folding mechanism and a defined population of folding partners. However, there is a growing number of examples of chaperonin 60 proteins whose crystal structures and oligomeric composition are at variance with GroEL, suggesting that additional complexities in the protein‐folding function of this protein should be expected. In addition, many organisms have multiple chaperonin 60 proteins, some of which have lost their protein‐folding ability. It is emerging that this highly conserved protein has evolved a bewildering variety of additional biological functions – known as moonlighting functions – both within the cell and in the extracellular milieu. Indeed, in some organisms, it is these moonlighting functions that have been left after the loss of the protein‐folding activity. This highlights the major paradox in the biology of chaperonin 60. This article reviews the relationship between the folding and non‐folding (moonlighting) activities of the chaperonin 60 family and discusses current knowledge on their molecular evolution focusing on protein domains involved in the non‐folding chaperonin functions in an attempt to understand the emerging biology of this evolutionarily ancient protein family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号