首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2000年   1篇
排序方式: 共有33条查询结果,搜索用时 296 毫秒
11.
An enzymatic reaction using glucose oxidase (GOx) was applied for continues production of hydrogen peroxide and organic acid in Phanerochaete chrysosporium cultures for use simultaneously in catalytic cycle of peroxidases. Decolorization efficiency of crystal violet (CV) as a model pollutant was investigated in 16 d old cultures which overproduced manganese peroxidase (MnP) in response to daily GOx addition and control cultures (i.e. no GOx was added). However, the ability of overproduced cultures in decolorization of CV was not increased significantly, through addition of GOx (300?U/L)?+?glucose (10?Mm) to the culture medium at the start of decolorization, the time needed to obtain 87?±?0.5% removal of CV was reduced 10.7-fold in compared with the control culture. The best GOx concentration in culture medium for more efficient decolorization was obtained to be 300?U/L. These findings indicated that GOx in the presence of glucose could increase the degradation of CV not only by inducing ligninolytic activity in cultures but also as a subsidiary source for in situ H2O2 and organic acid production for catalytic activity of peroxidases in P. chrysosporium cultures.  相似文献   
12.
Expression of catalase and glutathione peroxidase in renal insufficiency   总被引:2,自引:0,他引:2  
Chronic renal failure (CRF) is associated with oxidative stress, the precise mechanism of which is yet to be elucidated. The present study was undertaken to investigate in renal insufficiency the expression of catalase and glutathione peroxidase, which play a critical role in antioxidant defense system by catalyzing detoxification of hydrogen peroxide (H2O2) and organic hydroperoxides. Rats were randomly assigned to the CRF (5/6 nephrectomized) and sham-operated control groups and observed for 6 weeks. Renal and thoracic aortic catalase and glutathione peroxidase protein abundance was measured by Western blotting. The enzyme activities in the renal and aortic extracts, hepatic glutathione levels, blood pressure and urinary nitric oxide metabolites (NO(x)) excretion were also measured. Blood pressure and urinary nitric oxide metabolite (NO(x)) excretion were also measured. The CRF group showed a significant down-regulation of both immunodetectable catalase and glutathione peroxidase proteins in the remnant kidney. Catalase activity was also significantly decreased in the remnant kidney whereas glutathione peroxidase activity was not significantly affected. Furthermore, the protein abundance of catalase was unchanged whereas the enzyme activity was significantly decreased in the thoracic aorta of CRF animals compared to the sham-operated controls. By contrast, both the protein abundance and the enzyme activity of glutathione peroxidase were not significantly affected in the aorta of CRF animals compared to the sham-operated controls. This was coupled with marked arterial hypertension, significant reduction of hepatic glutathione levels and urinary NO(x) excretion pointing to increased inactivation and sequestration of NO by superoxide. These events point to the role of impaired antioxidant defense system in the pathogenesis of oxidative stress in CRF.  相似文献   
13.
The molecular basis governing functional behavior of human hematopoietic stem cells (HSCs) is largely unknown. Here, using in vitro and in vivo assays, we isolate and define progenitors versus repopulating HSCs from multiple stages of human development for global gene expression profiling. Accounting for both the hierarchical relationship between repopulating cells and their progenitors, and the enhanced HSC function unique to early stages of ontogeny, the human homologs of Hairy Enhancer of Split-1 (HES-1) and Hepatocyte Leukemia Factor (HLF) were identified as candidate regulators of HSCs. Transgenic human hematopoietic cells expressing HES-1 or HLF demonstrated enhanced in vivo reconstitution ability that correlated to increased cycling frequency and inhibition of apoptosis, respectively. Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems, suggesting that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior.  相似文献   
14.
The two main phases of the mammalian cardiac cycle are contraction and relaxation; however, whether there is a connection between them in humans is not well understood. Routine exercise has been shown to improve cardiac function, morphology, and molecular signatures. Likewise, the acute and chronic changes that occur in the heart in response to injury, disease, and stress are well characterized, albeit not fully understood. In this study, we investigated how exercise and myocardial injury affect contraction–relaxation coupling. We retrospectively analyzed the correlation between the maximal speed of contraction and the maximal speed of relaxation of canine myocardium after receiving surgically induced myocardial infarction, followed by either sedentary recovery or exercise training for 10–12 wk. We used isolated right ventricular trabeculae, which were electrically paced at different lengths, frequencies, and with increasing β-adrenoceptor stimulation. In all conditions, contraction and relaxation were linearly correlated, irrespective of injury or training history. Based on these results and the available literature, we posit that contraction–relaxation coupling is a fundamental myocardial property that resides in the structural arrangement of proteins at the level of the sarcomere and that this may be regulated by the actions of cardiac myosin binding protein C (cMyBP-C) on actin and myosin.  相似文献   
15.
16.
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.  相似文献   
17.

The maternal vasculature undergoes tremendous growth and remodeling (G&R) that enables a?>?15-fold increase in blood flow through the uterine vasculature from conception to term. Hemodynamic metrics (e.g., uterine artery pulsatility index, UA-PI) are useful for the prognosis of pregnancy complications; however, improved characterization of the maternal hemodynamics is necessary to improve prognosis. The goal of this paper is to develop a mathematical framework to characterize maternal vascular G&R and hemodynamics in uncomplicated human pregnancies. A validated 1D model of the human vascular tree from the literature was adapted and inlet blood flow waveforms at the ascending aorta at 4 week increments from 0 to 40 weeks of gestation were prescribed. Peripheral resistances of each terminal vessel were adjusted to achieve target flow rates and mean arterial pressure at each gestational age. Vessel growth was governed by wall shear stress (and axial lengthening in uterine vessels), and changes in vessel distensibility were related to vessel growth. Uterine artery velocity waveforms generated from this model closely resembled ultrasound results from the literature. The literature UA-PI values changed significantly across gestation, increasing in the first month of gestation, then dramatically decreasing from 4 to 20 weeks. Our results captured well the time-course of vessel geometry, material properties, and UA-PI. This 1D fluid-G&R model captured the salient hemodynamic features across a broad range of clinical reports and across gestation for uncomplicated human pregnancy. While results capture available data well, this study highlights significant gaps in available data required to better understand vascular remodeling in pregnancy.

  相似文献   
18.

Background

Computed tomographic (CT) airway lumen narrowing is associated with lower lung function. Although volumetric CT measures of airways (wall volume [WV] and lumen volume [LV]) compared to cross sectional measures can more accurately reflect bronchial morphology, data of their use in never smokers is scarce. We hypothesize that native tracheobronchial tree morphology as assessed by volumetric CT metrics play a significant role in determining lung function in normal subjects. We aimed to assess the relationships between airway size, the projected branching generation number (BGN) to reach airways of <2mm lumen diameter –the site for airflow obstruction in smokers- and measures of lung function including forced expiratory volume in 1 second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity (FEF 25–75).

Methods

We assessed WV and LV of segmental and subsegmental airways from six bronchial paths as well as lung volume on CT scans from 106 never smokers. We calculated the lumen area ratio of the subsegmental to segmental airways and estimated the projected BGN to reach a <2mm-lumen-diameter airway assuming a dichotomized tracheobronchial tree model. Regression analysis was used to assess the relationships between airway size, BGN, FEF 25–75, and FEV1.

Results

We found that in models adjusted for demographics, LV and WV of segmental and subsegmental airways were directly related to FEV1 (P <0.05 for all the models). In adjusted models for age, sex, race, LV and lung volume or height, the projected BGN was directly associated with FEF 25–75 and FEV1 (P = 0.001) where subjects with lower FEV1 had fewer calculated branch generations between the subsegmental bronchus and small airways. There was no association between airway lumen area ratio and lung volume.

Conclusion

We conclude that in never smokers, those with smaller central airways had lower airflow and those with lower airflow had less parallel airway pathways independent of lung size. These findings suggest that variability in the structure of the tracheobronchial tree may influence the risk of developing clinically relevant smoking related airway obstruction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0181-y) contains supplementary material, which is available to authorized users.  相似文献   
19.
The vascular endothelium is best known for its role in oxygen and nutrient delivery to the various tissues. Growing evidence supports a far more complex role in tissue homeostasis. In particular, reciprocal interactions between endothelial cells and the local microenvironment may regulate organ development and pattern formation. Such interactions appear to be important also in the adult, in normal and pathological conditions.  相似文献   
20.
Long noncoding RNAs (lncRNAs) have been involved in the pathogenesis of several human cancers including gastric cancer. In the current study, we selected five lncRNAs namely NEAT1, TUG1, PANDA, UCA1, and GHET1 to assess their expressions in gastric cancer samples compared with adjacent noncancerous tissues (ANCTs) from the same patients. Some previous reports have shown contribution of these lncRNAs in gastric cancer. However, we aimed to explore their associations with patients’ clinicopathological data and their potential as diagnostic biomarkers. Significant associations were found between site of primary tumor and relative expression of all lncRNAs in cancer samples compared with ANCTs. Besides, GHET1 relative expression was associated with lymph node status. The diagnostic power of GHET1 was higher from other lncRNAs. Combination of GHET1, TUG1, UCA1, and PANDA increased the diagnostic power and significance (AUC = 0.8; P < 0.0001). The current study supports participation of lncRNAs in the pathogenesis of gastric cancer and highlights their potential as diagnostic biomarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号