首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   29篇
  国内免费   2篇
  2023年   2篇
  2022年   10篇
  2021年   17篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   7篇
  2016年   17篇
  2015年   28篇
  2014年   19篇
  2013年   38篇
  2012年   37篇
  2011年   17篇
  2010年   18篇
  2009年   14篇
  2008年   13篇
  2007年   18篇
  2006年   18篇
  2005年   13篇
  2004年   11篇
  2003年   12篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   5篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
121.
122.
Both the epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF1R) require homo- and hetero-dimerisation with their own family members to acquire full function. We recently showed that IGF1R gene silencing led to EGFR hyper-phosphorylation in human breast cancer cells, and hypothesised that this crosstalk might be associated with direct IGF1R:EGFR interaction. Indeed we could detect reciprocal co-precipitation between the IGF1R and EGFR when overexpressed in SKUT-1 cells, and between endogenous IGF1R and EGFR in MDA-MB-468 breast carcinoma cells, two squamous cancer cell lines, and clinical samples of breast cancer. Interaction was abolished by knockdown of either receptor, and we noted that EGFR knockdown also suppressed IGF1R protein levels. Further investigation revealed that EGFR depletion induced enhancement of IGF1R ubiquitylation and degradation. These results indicate novel evidence of crosstalk between two key cancer treatment targets, capable of modifying the stability of IGF1R protein.  相似文献   
123.
In addition to antibiotic properties, medicinal plants are important sources of chemicals with potential application as pesticides. The present study deals with antitermitic potential of seed extracts of Withania somnifera (Indian ginseng), Croton tiglium (jamalgoota) and Hygrophila auriculata (talimkhana). The seed extracts caused changes in tunneling behaviour, number of bacterial colonies in hindgut and activities of enzymes in midgut of Odontotermes obesus. C. tiglium showed the lowest LT50 (12.85 and 2.65 h) among the three seed extracts at concentrations of 50% (half dilution of the extract) and 100% (extract without dilution), respectively. There was no tunneling in soil treated with 100% concentration of seed extracts of W. somnifera and C. tiglium. Numbers of bacterial colonies in the gut of termites from soils treated with 50% and 100% concentrations of the three plants did not differ significantly, but they differed from those in termites from untreated soil. At 50% concentrations of seed extracts of the tested plants, the difference in hindgut enzyme activities was not obvious, however, at 100% concentrations the enzyme activities in the termites from soils treated with seed extracts significantly differed from controls and differences were also recorded between the plants.  相似文献   
124.
125.
Filopodia are dynamic actin-based structures that play roles in processes such as cell migration, wound healing, and axonal guidance. Cdc42 induces filopodial formation through IRSp53, an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain protein. Previous work from a number of laboratories has shown that IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics through its Src homology 3 domain binding partners. Here, we show that dynamin1 (Dyn1), the large guanosine triphosphatase, is an interacting partner of IRSp53 through pulldown and Förster resonance energy transfer analysis, and we explore its role in filopodial formation. In neuroblastoma cells, Dyn1 localizes to filopodia, associated tip complexes, and the leading edge just behind the anti-capping protein mammalian enabled (Mena). Dyn1 knockdown reduces filopodial formation, which can be rescued by overexpressing wild-type Dyn1 but not the GTPase mutant Dyn1-K44A and the loss-of-function actin binding domain mutant Dyn1-K/E. Interestingly, dynasore, an inhibitor of Dyn GTPase, also reduced filopodial number and increased their lifetime. Using rapid time-lapse total internal reflection fluorescence microscopy, we show that Dyn1 and Mena localize to filopodia only during initiation and assembly. Dyn1 actin binding domain mutant inhibits filopodial formation, suggesting a role in actin elongation. In contrast, Eps8, an actin capping protein, is seen most strongly at filopodial tips during disassembly. Taken together, the results suggest IRSp53 partners with Dyn1, Mena, and Eps8 to regulate filopodial dynamics.  相似文献   
126.

Background

The 3′ splice site (SS) at the end of pre-mRNA introns has a consensus sequence (Y)nNYAG for constitutive splicing of mammalian genes. Deviation from this consensus could change or interrupt the usage of the splice site leading to alternative or aberrant splicing, which could affect normal cell function or even the development of diseases. We have shown that the position “N” can be replaced by a CA-rich RNA element called CaRRE1 to regulate the alternative splicing of a group of genes.

Results

Taking it a step further, we searched the human genome for purine-rich elements between the -3 and -10 positions of the 3′ splice sites of annotated introns. This identified several thousand such 3′SS; more than a thousand of them contain at least one copy of G tract. These sites deviate significantly from the consensus of constitutive splice sites and are highly associated with alterative splicing events, particularly alternative 3′ splice and intron retention. We show by mutagenesis analysis and RNA interference that the G tracts are splicing silencers and a group of the associated exons are controlled by the G tract binding proteins hnRNP H/F. Species comparison of a group of the 3′SS among vertebrates suggests that most (~87%) of the G tracts emerged in ancestors of mammals during evolution. Moreover, the host genes are most significantly associated with cancer.

Conclusion

We call these elements together with CaRRE1 regulatory RNA elements between the Py and 3′AG (REPA). The emergence of REPA in this highly constrained region indicates that this location has been remarkably permissive for the emergence of de novo regulatory RNA elements, even purine-rich motifs, in a large group of mammalian genes during evolution. This evolutionary change controls alternative splicing, likely to diversify proteomes for particular cellular functions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1143) contains supplementary material, which is available to authorized users.  相似文献   
127.
Acute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar cell Ca2+. These aberrant Ca2+ elevations are triggered by release of Ca2+ from apical Ca2+ pools that are gated by the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3. In this study, we examined the role of IP3R type 2 (IP3R2) using mice deficient in this Ca2+ release channel (IP3R2−/−). Using live acinar cell Ca2+ imaging we found that loss of IP3R2 reduced the amplitude of the apical Ca2+ signal and caused a delay in its initiation. This was associated with a reduction in carbachol-stimulated amylase release and an accumulation of zymogen granules (ZGs). Specifically, there was a 2-fold increase in the number of ZGs (P<0.05) and an expansion of the ZG pool area within the cell. There was also a 1.6- and 2.6-fold increase in cellular amylase and trypsinogen, respectively. However, the mice did not have evidence of pancreatic injury at baseline, other than an elevated serum amylase level. Further, pancreatitis outcomes using a mild caerulein hyperstimulation model were similar between IP3R2−/− and wild type mice. In summary, IP3R2 modulates apical acinar cell Ca2+ signals and pancreatic enzyme secretion. IP3R-deficient acinar cells accumulate ZGs, but the mice do not succumb to pancreatic damage or worse pancreatitis outcomes.  相似文献   
128.
The researchers at Boston University (BU)'s Neuromorphics Laboratory, part of the National Science Foundation (NSF)-sponsored Center of Excellence for Learning in Education, Science, and Technology (CELEST), are working in collaboration with the engineers and scientists at Hewlett-Packard (HP) to implement neural models of intelligent processes for the next generation of dense, low-power, computer hardware that will use memristive technology to bring data closer to the processor where computation occurs. The HP and BU teams are jointly designing an optimal infrastructure, simulation, and software platform to build an artificial brain. The resulting Cog Ex Machina (Cog) software platform has been successfully used to implement a large-scale, multicomponent brain system that is able to simulate some key rat behavioral results in a virtual environment and has been applied to control robotic platforms as they learn to interact with their environment.  相似文献   
129.
130.
Microglia are one of the main cell types activated by brain injury. In the present study, we have investigated how domains of the extracellular matrix molecule tenascin-R (TN-R) modulate microglia function. We found that epidermal growth factor-like repeats inhibited adhesion and migration of microglia via a protein kinase A-dependent mechanism. In contrast, fibronectin 6-8 repeats promoted adhesion and migration of the primary microglia via a protein kinase C-dependent mechanism. Both domains of TN-R induced an up-regulation in the secretion of cytokines, such as chemokine-induced cytokine 3 and tumor neurosis factor alpha. Interestingly, epidermal growth factor-like repeats and fibronectin 6-8 induced a dramatic up-regulation in the secretion of brain-derived neurotrophic factor/transforming growth factor-beta and nerve growth factor/transforming growth factor-beta, respectively, and conditioned medium from activated microglia was able to promote neurite outgrowth of N1E-115 cells and primary cortical neurons. These results suggest that TN-R plays a role in neuroprotection through distinct domains coordinating to modulate microglia function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号