首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   54篇
  2023年   12篇
  2022年   33篇
  2021年   55篇
  2020年   21篇
  2019年   30篇
  2018年   43篇
  2017年   33篇
  2016年   39篇
  2015年   62篇
  2014年   54篇
  2013年   62篇
  2012年   82篇
  2011年   70篇
  2010年   41篇
  2009年   31篇
  2008年   35篇
  2007年   45篇
  2006年   49篇
  2005年   40篇
  2004年   31篇
  2003年   26篇
  2002年   21篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   6篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
51.
We have developed a system for rapid and reliable assessment of gene essentiality in Haemophilus influenzae Rd strain KW20. We constructed two "suicide" complementation vectors (pASK5 and pASK6) containing 5' and 3' regions of the nonessential ompP1 gene flanking a multiple cloning site and a selectable marker (a chloramphenicol resistance gene or a tetracycline resistance cassette). Transformation of H. influenzae with the complementation constructs directs chromosomal integration of a gene of interest into the ompP1 locus, where the strong, constitutive ompP1 promoter drives its expression. This single-copy, chromosome-based complementation system is useful for confirming the essentiality of disrupted genes of interest. It allows genetic analysis in a background free of interference from any upstream or downstream genetic elements and enables conclusive assignment of essentiality. We validated this system by using the riboflavin synthase gene (ribC), a component of the riboflavin biosynthetic pathway. Our results confirmed the essentiality of ribC for survival of H. influenzae Rd strain KW20 and demonstrated that a complementing copy of ribC placed under control of the ompP1 promoter reverses the lethal phenotype of a strain with ribC deleted.  相似文献   
52.
We report on the effectiveness of molecular studies regarding Fanconi anemia (FA) for a better selection of bone marrow graft donors and for post-transplant follow up. Ten unrelated FA patients and their families were analyzed by microsatellite markers. In 9 cases, the cytogenetic investigation of potential human leukocyte antigen (HLA)-identical related donors was normal, and the molecular analyses confirmed that they were also either normal or heterozygous carriers. For 1 patient, cytogenetic analysis of an HLA-identical sibling donor yielded ambiguous results with a relatively high number of chromosomal breakages using cross-linking agents. However, genotyping of this potential donor demonstrated his heterozygous state. Nine patients have received allogeneic bone marrow transplantation from HLA-matched related donors. Microsatellite analysis showed complete chimerism (CC) in all cases. The median follow up was 54 months (range 8-144 months). One patient out of 9 with CC rejected her graft without prior detection of a transitional mixed chimerism. Among these patients, 1 died 25 months after the transplantation of a chronic graft-versus-host-disease (GVHD). We conclude that, when the cytogenetic studies are not conclusive, molecular analyses are crucial to distinguish heterozygous carriers from asymptomatic FA Tunisian patients. Molecular analyses also allowed the evaluation of hematopoietic chimerism after allogeneic bone marrow transplantation and might be of value to identify patients with a high risk for graft rejection.  相似文献   
53.
Endemic pemphigus foliaceus (EPF) is a complex autoimmune disease characterized by the presence of antibodies against desmoglein 1, which lead to the loss of adhesion among keratinocytes (acantholysis). Variants of HLA class II genes have been the only genetic factors found to modulate susceptibility to EPF. This study aims at investigating the influence of cytokine genetic variants in the pathogenesis of EPF, since they may affect the expression levels of these immunomodulatory molecules. The sample included 168 patients and 189 controls and was comprised of mostly Caucasoids and Mulattos. The approach consisted of a case-control association study and the alleles were identified by mismatched PCR-RFLP. No associations were found with variants of IL1A, IL1B, IL1RN, IL4R and IL10. There was a weak negative association with the haplotype -1082G -592C (OR=0.49) of the IL10 gene in Mulattos. In regard to polymorphism -590 of the IL4 gene, a positive association with the T/T genotype (OR=2.71) and a negative association with the C variant (OR=0.37) were found. Associations with IL6 -174 variants suggest that the C/C genotype has a protective effect (OR=0.13) while carriers of the G allele are more susceptible (OR=7.66) to EPF.  相似文献   
54.
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.  相似文献   
55.
Glutamate is the primary excitatory neurotransmitter in brain. By stimulating neuronal activity, glutamate increases cellular energy utilization, enhances ATP hydrolysis and promotes the formation of adenosine. Adenosine has receptor-mediated effects that reduce or oppose the excitatory effects of glutamate. As a possible mechanism for ethanol's ability to inhibit excitatory effects of glutamate and enhance inhibitory effects of adenosine, we tested the hypothesis that ethanol promotes [3H]glutamate uptake and inhibits [3H]adenosine uptake. Using primary cultures of rat astrocytes, we found that acute treatment with ethanol (50 mM, 30 min) inhibited [3H]glutamate uptake and reduced protein kinase C (PKC)-induced stimulation of [3H]glutamate uptake. Prolonged treatment (50 mM, 3 day) with ethanol, however, increased both [3H]glutamate uptake and PKC activity. Contrary to other cell types, neither acute or chronic ethanol exposure affected [3H]adenosine uptake in astrocytes. These data indicate that in rat cortical astrocytes ethanol affects [3H]glutamate uptake but not [3H]adenosine uptake by affecting PKC modulation of transporter activity.  相似文献   
56.
Ahmad W  Ali MN  Farah MA  Ateeq B 《Chromosoma》2002,110(8):570-574
An in vivo study of the effects of pentachlorophenol was carried out with a pre-acclimatized fish species, Heteropneustes fossilis, using four sub-lethal concentrations, 0.1, 0.2, 0.3 and 0.4 ppm, and three sampling times, 48, 72 and 96 h. Cytogenetic preparations were stained by the haematoxylin-eosin technique. The incidence of micronuclei was scored by a manual and an automated method. Small-sized micronuclei appeared in the cytoplasm in addition to the main nucleus. The frequency of micronucleated erythrocytes peaked at 4 days (96 h) exposure. The percentage of single micronuclei increased with longer exposures. The Mann-Whitney U test showed all micronuclei frequencies were significantly different from control (P<0.05). No statistical difference was observed between scores obtained by the manual and automated methods. A linear relationship between the percentage of micronucleated erythrocytes and dose was confirmed at all levels. Computer image analysis of morphological variations of erythrocytes indicated a 1:5 ratio of micronuclei and main nucleus accompanied by a reduction in cell volume by 600 dot units. Pentachlorophenol-mediated genotoxicity was confirmed in this fish for the first time. Possible consequences of genotoxicity and cytotoxicity are discussed.  相似文献   
57.
Diabetes causes accelerated atherosclerosis and subsequent cardiovascular disease through mechanisms that are poorly understood. We have previously shown, using a porcine model of diabetes-accelerated atherosclerosis, that diabetes leads to an increased accumulation and proliferation of arterial smooth muscle cells in atherosclerotic lesions and that this is associated with elevated levels of plasma triglycerides. We therefore used the same model to investigate the mechanism whereby diabetes may stimulate smooth muscle cell proliferation. We show that lesions from diabetic pigs fed a cholesterol-rich diet contain abundant insulin-like growth factor-I (IGF-I), in contrast to lesions from non-diabetic pigs. Furthermore, two fatty acids common in triglycerides, oleate and linoleate, enhance the growth-promoting effects of IGF-I in smooth muscle cells isolated from these animals. These fatty acids accumulate predominantly in the membrane phospholipid pool; oleate accumulates preferentially in phosphatidylcholine and phosphatidylethanolamine, whereas linoleate is found mainly in phosphatidylethanolamine. The growth-promoting effects of oleate and linoleate depend on phospholipid hydrolysis by phospholipase D and subsequent generation of diacylglycerol. Thus, concurrent increases in levels of IGF-I and triglyceride-derived oleate and linoleate in lesions may contribute to accumulation and proliferation of smooth muscle cells and lesion progression in diabetes-accelerated atherosclerosis.  相似文献   
58.
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.  相似文献   
59.
A variety of studies on neuronal death models suggest that lithium has neuroprotective properties. In the present investigation, we have examined the effect of chronic lithium treatment on hippocampus, as monitored by changes at the subcellular level of apoptosis-regulatory proteins which have been induced by the neurotoxin, aluminum maltolate. Intracisternal administration of aluminum into rabbit brain induces cytochrome c release, decreases levels of the anti-apoptotic proteins Bcl-2 and Bcl-X(L), increases levels of the pro-apoptotic Bax, activates caspase-3, and causes DNA fragmentation as measured by the TUNEL assay. Pretreatment for 14 days with 7 mm of lithium carbonate in drinking water prevents aluminum-induced translocation of cytochrome c, and up-regulates Bcl-2 and Bcl-X(L,) down-regulates Bax, abolishes caspase-3 activity and reduces DNA damage. The regulatory effect of lithium on the apoptosis-controlling proteins occurs in both the mitochondria and endoplasmic reticulum. We propose that the neuroprotective effect of lithium involves the modulation of apoptosis-regulatory proteins present in the subcellular organelles of rabbit brain.  相似文献   
60.
Despite the intense interest in the metabolic regulation and evolution of the ATP-producing pathways, the long standing question of why most multicellular microorganisms metabolize glucose by respiration rather than fermentation remains unanswered. One such microorganism is the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). Using EST analysis and cDNA microarrays, we find that in T. reesei expression of the genes encoding the enzymes of the tricarboxylic acid cycle and the proteins of the electron transport chain is programmed in a way that favors the oxidation of pyruvate via the tricarboxylic acid cycle rather than its reduction to ethanol by fermentation. Moreover, the results indicate that acetaldehyde may be channeled into acetate rather than ethanol, thus preventing the regeneration of NAD(+), a pivotal product required for anaerobic metabolism. The studies also point out that the regulatory machinery controlled by glucose was most probably the target of evolutionary pressure that directed the flow of metabolites into respiratory metabolism rather than fermentation. This finding has significant implications for the development of metabolically engineered cellulolytic microorganisms for fuel production from cellulose biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号