首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   54篇
  2023年   12篇
  2022年   36篇
  2021年   55篇
  2020年   21篇
  2019年   30篇
  2018年   43篇
  2017年   33篇
  2016年   39篇
  2015年   62篇
  2014年   54篇
  2013年   62篇
  2012年   82篇
  2011年   70篇
  2010年   41篇
  2009年   31篇
  2008年   35篇
  2007年   45篇
  2006年   49篇
  2005年   40篇
  2004年   31篇
  2003年   26篇
  2002年   21篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   6篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1035条查询结果,搜索用时 15 毫秒
31.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   
32.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20 mg/kg bwt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3 mg/kg bwt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer’s type (SDAT).  相似文献   
33.
Dexrazoxane has been approved to treat anthracycline-induced cardiomyopathy and extravasation. However, the effect of dexrazoxane on epirubicin-induced genetic alterations in germ cells has not yet been reported. Thus, the aim of this study was to determine whether dexrazoxane modulates epirubicin-induced genetic damage in the germ cells of male mice. Our results show that dexrazoxane was not genotoxic at the tested doses. Furthermore, it protected mouse germ cells against epirubicin-induced genetic alterations as detected by the reduction in disomic and diploid sperm, spermatogonial chromosomal aberrations, and abnormal sperm heads. The attenuating effect of dexrazoxane was greater at higher dose, indicating a dose-dependent effect. Moreover, sperm motility and count were ameliorated by dexrazoxane pretreatment. Epirubicin induced marked biochemical changes characteristic of oxidative DNA damage including elevated 8-hydroxy-2ʹ-deoxyguanosine levels and reduction in reduced glutathione. Pretreatment of mice with dexrazoxane before epirubicin challenge restored these altered endpoints. We conclude that dexrazoxane may efficiently mitigate the epirubicin insult in male germ cells, and prevent the enhanced risk of abnormal reproductive outcomes and associated health risks. Thus, pretreating patients with dexrazoxane prior to epirubicin may efficiently preserve not only sperm quality but also prevent the transmission of genetic damage to future generations.  相似文献   
34.
Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses.  相似文献   
35.
Forest restoration requires strategies such as passive restoration to balance financial investments and ecological outcomes. However, the ecological outcomes of passive restoration are traditionally regarded as uncertain. We evaluated technical and legal strategies for balancing economic costs and ecological outcomes of passive versus active restoration in agricultural landscapes. We focused in the case of Brazil, where we assessed the factors driving the proportion of land allocated to passive and active restoration in 42 programs covering 698,398 hectares of farms in the Atlantic Forest, Atlantic Forest/cerrado ecotone and Amazon; the ecological outcomes of passive and active restoration in 2955 monitoring plots placed in six restoration programs; and the legal framework developed by some Brazilian states to balance the different restoration approaches and comply with legal commitments. Active restoration had the highest proportion of land allocated to it (78.4%), followed by passive (14.2%) and mixed restoration (7.4%). Passive restoration was higher in the Amazon, in silviculture, and when remaining forest cover was over 50 percent. Overall, both restoration approaches showed high levels of variation in the ecological outcomes; nevertheless, passively restored areas had a smaller percentage canopy cover, lower species density, and less shrubs and trees (dbh > 5 cm). The studied legal frameworks considered land abandonment for up to 4 years before deciding on a restoration approach, to favor the use of passive restoration. A better understanding of the biophysical and socioeconomic features of areas targeted for restoration is needed to take a better advantage of their natural regeneration potential.  相似文献   
36.
37.
38.
39.
This study investigates the amphisbaenian species skull which includes cranium, lower jaw and hyoid apparatus. The medial dorsal bones comprise the premaxilla, nasal, frontal and parietal. The premaxilla carries a large medial tooth and two lateral ones. The nasals are paired bones and separated by longitudinal suture. Bones of circumorbital series are frontal, orbitosphenoid and maxilla. The occipital ring consists of basioccipital, supraoccipital and exooccipital. Supraoccipital and basioccipital are single bones while the exo-occipitals are paired. The bones of the palate comprise premaxilla, maxilla, septomaxilla, palatine, pterygoid, ectopterygoid, basisphenoid, parasphenoid, orbitosphenoid and laterosphenoid. Prevomer and pterygoid teeth are absent. Palatine represent by two separate bones. The temporal bones are clearly visible. The lower jaw consists of the dentary, articular, coronoid, supra-angular, angular and splenial. The hyoid apparatus is represented by a Y-shaped structure. The mandible is long and is suspended from the braincase via relatively short quadrate. There is an extensive contact between the long angular and the large triangular coronoid. Thus inter-mandibular joint is bridged completely by the angular and consequently, the lower jaws are relatively rigid and kinetic. The maxillae are suspended from the braincase largely by ligaments and muscles rather than through bony articulation. In conclusion, the skull shape affects feeding strategy in Diplometopon zarudnyi. The prey is ingested and transported via a rapid maxillary raking mechanism.  相似文献   
40.
The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号