首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   46篇
  2023年   3篇
  2022年   32篇
  2021年   42篇
  2020年   16篇
  2019年   24篇
  2018年   34篇
  2017年   25篇
  2016年   36篇
  2015年   55篇
  2014年   47篇
  2013年   68篇
  2012年   62篇
  2011年   71篇
  2010年   45篇
  2009年   29篇
  2008年   37篇
  2007年   57篇
  2006年   54篇
  2005年   48篇
  2004年   30篇
  2003年   26篇
  2002年   22篇
  2001年   10篇
  2000年   14篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   7篇
  1969年   2篇
  1968年   2篇
排序方式: 共有993条查询结果,搜索用时 156 毫秒
41.
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.  相似文献   
42.
Ahmad W  Ali MN  Farah MA  Ateeq B 《Chromosoma》2002,110(8):570-574
An in vivo study of the effects of pentachlorophenol was carried out with a pre-acclimatized fish species, Heteropneustes fossilis, using four sub-lethal concentrations, 0.1, 0.2, 0.3 and 0.4 ppm, and three sampling times, 48, 72 and 96 h. Cytogenetic preparations were stained by the haematoxylin-eosin technique. The incidence of micronuclei was scored by a manual and an automated method. Small-sized micronuclei appeared in the cytoplasm in addition to the main nucleus. The frequency of micronucleated erythrocytes peaked at 4 days (96 h) exposure. The percentage of single micronuclei increased with longer exposures. The Mann-Whitney U test showed all micronuclei frequencies were significantly different from control (P<0.05). No statistical difference was observed between scores obtained by the manual and automated methods. A linear relationship between the percentage of micronucleated erythrocytes and dose was confirmed at all levels. Computer image analysis of morphological variations of erythrocytes indicated a 1:5 ratio of micronuclei and main nucleus accompanied by a reduction in cell volume by 600 dot units. Pentachlorophenol-mediated genotoxicity was confirmed in this fish for the first time. Possible consequences of genotoxicity and cytotoxicity are discussed.  相似文献   
43.
Diabetes causes accelerated atherosclerosis and subsequent cardiovascular disease through mechanisms that are poorly understood. We have previously shown, using a porcine model of diabetes-accelerated atherosclerosis, that diabetes leads to an increased accumulation and proliferation of arterial smooth muscle cells in atherosclerotic lesions and that this is associated with elevated levels of plasma triglycerides. We therefore used the same model to investigate the mechanism whereby diabetes may stimulate smooth muscle cell proliferation. We show that lesions from diabetic pigs fed a cholesterol-rich diet contain abundant insulin-like growth factor-I (IGF-I), in contrast to lesions from non-diabetic pigs. Furthermore, two fatty acids common in triglycerides, oleate and linoleate, enhance the growth-promoting effects of IGF-I in smooth muscle cells isolated from these animals. These fatty acids accumulate predominantly in the membrane phospholipid pool; oleate accumulates preferentially in phosphatidylcholine and phosphatidylethanolamine, whereas linoleate is found mainly in phosphatidylethanolamine. The growth-promoting effects of oleate and linoleate depend on phospholipid hydrolysis by phospholipase D and subsequent generation of diacylglycerol. Thus, concurrent increases in levels of IGF-I and triglyceride-derived oleate and linoleate in lesions may contribute to accumulation and proliferation of smooth muscle cells and lesion progression in diabetes-accelerated atherosclerosis.  相似文献   
44.
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.  相似文献   
45.
In a Japanese population of Locusta migratoria, adult females become reproductively inactive under crowding and long days (LD) and reproductively active under crowding and short days (SD). The identity and titre of ecdysteroids in the haemolymph and ovaries from adult females reared under SD and LD were investigated by RIA/HPLC. The effects of exogenous juvenile hormone (JH) III treatments on the termination of such reproductive arrest and ecdysteroid contents in LD females were also examined. In general, ecdysteroid titres in both haemolymph and ovaries were significantly higher in reproductively active SD females than in reproductively inactive LD females. A clear difference was also observed in oocyte growth between SD and LD individuals. JH III applications (three consecutive topical applications, 150 μg per insect per day from day 3) stimulated ovarian development in LD females and significantly increased the haemolymph and ovarian ecdysteroids to a level comparable to that of reproductively active SD adult females.  相似文献   
46.
Despite the intense interest in the metabolic regulation and evolution of the ATP-producing pathways, the long standing question of why most multicellular microorganisms metabolize glucose by respiration rather than fermentation remains unanswered. One such microorganism is the cellulolytic fungus Trichoderma reesei (Hypocrea jecorina). Using EST analysis and cDNA microarrays, we find that in T. reesei expression of the genes encoding the enzymes of the tricarboxylic acid cycle and the proteins of the electron transport chain is programmed in a way that favors the oxidation of pyruvate via the tricarboxylic acid cycle rather than its reduction to ethanol by fermentation. Moreover, the results indicate that acetaldehyde may be channeled into acetate rather than ethanol, thus preventing the regeneration of NAD(+), a pivotal product required for anaerobic metabolism. The studies also point out that the regulatory machinery controlled by glucose was most probably the target of evolutionary pressure that directed the flow of metabolites into respiratory metabolism rather than fermentation. This finding has significant implications for the development of metabolically engineered cellulolytic microorganisms for fuel production from cellulose biomass.  相似文献   
47.
We previously used electron cryo-crystallography to determine the three-dimensional structure of recombinant gap junction channels formed by a C-terminal truncation mutant of Cx43 (11). The dodecameric channel is formed by the end-to-end docking of two hexameric connexons, each comprised of 24 transmembrane alpha-helices. We have now generated two-dimensional crystals of the recombinant, full-length channel, as well as crystals in which the C-tail has been completely removed by trypsin digestion. Projection density maps at 7.5 A resolution closely resemble our previous analysis of the C-terminal truncation mutant (9). A difference map between the full length and trypsin-treated channels suggests that there are small but significant shifts in protein density upon removal of the C-tail.  相似文献   
48.
The immunomodulatory bioassay-guided fractionation of the oleogum resin of frankincense (Boswellia carterii Birdwood) resulted in the isolation and identification of 9 compounds; palmitic acid and eight triterpenoids belonging to lupane, ursane, oleanane, and tirucallane skeleta were isolated form the resin. These triterpenoids are lupeol, beta-boswellic acid, 11-keto-beta-boswellic acid, acetyl beta-boswellic acid, acetyl 11-keto-beta-boswellic acid, acetyl-alpha-boswellic acid, 3-oxo-tirucallic acid, and 3-hydroxy-tirucallic acid. The structures of the isolated compounds were deduced based on spectroscopic evidences. The lymphocyte transformation assay of the isolated compounds proved that the total extract retained more activity than that of any of the purified compounds.  相似文献   
49.
The in vitro Ca(2+) regulation of the actomyosin Mg(2+)-ATPase at physiological ratios of actin, tropomyosin, and troponin occurs only in the presence of troponin T. We have previously demonstrated that a polypeptide corresponding to the first 191 amino acids of troponin T (TnT-(1-191)) activates the actomyosin Mg(2+)-ATPase in the presence of tropomyosin. In order to further characterize this activation domain, we constructed troponin T fragments corresponding to residues 1-157 (TnT-(1-157)), 1-76 (TnT-(1-76)), 77-157 (TnT-(77-157)), 77-191 (TnT-(77-191)), and 158-191 (TnT-(158-191)). Assays using these fragments demonstrated the following: (a) residues 1-76 do not bind to tropomyosin or actin; (b) residues 158-191 bind to actin cooperatively but not to tropomyosin; (c) the sequence 77-157 is necessary for troponin interaction with residue 263 of tropomyosin; (d) TnT-(77-191) on its own activates the actomyosin ATPase activity as described previously for TnT-(1-191). TnT-(1-157), TnT-(1-76), TnT-(77-157), TnT-(158-191), and combinations of TnT-(158-191) with TnT-(1-157) or TnT-(77-157) showed no effect on the ATPase activity. We conclude that the activation of actomyosin ATPase activity is mediated by a direct interaction between amino acids 77 and 191 of troponin T, tropomyosin, and actin.  相似文献   
50.
Fusarium spp. are ubiquitous fungi infecting cereals and grains, and therefore constitute a major problem for agriculture. Their trichothecene metabolites, and in particular deoxynivalenol and its 3-acetylated derivative, are the mycotoxins involved. The major metabolite produced by Fusarium culmorum is 3-acetyldeoxynivalenol. Studies in vivo with Fusarium culmorum have established that its tricyclic intermediate, isotrichodermin, is a major biosynthetic precursor, which is hydroxylated at position 15 to give 15-deacetylcalonectrin, prior to being converted to the product. In a preliminary in vitro investigation of the cell-free system involved in this transformation, we suggested that cytochrome P450 enzymes are not involved. In this paper, the isotrichodermin-15-hydroxylase from the microsomal fraction of Fusarium culmorum was solubilized and partially purified (60 fold). Our studies with cofactors indicate that this enzyme is a flavoprotein, and the inducers tested highly indicate that indeed the hydroxylase is not attached to cytochrome P450. This is particularly interesting, since the only other enzyme catalyzing the same reaction isolated from Fusarium sporotrichiodes is attached to cytochrome P450.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号