首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   112篇
  2023年   13篇
  2022年   13篇
  2021年   32篇
  2020年   22篇
  2019年   22篇
  2018年   30篇
  2017年   23篇
  2016年   42篇
  2015年   79篇
  2014年   67篇
  2013年   94篇
  2012年   92篇
  2011年   100篇
  2010年   73篇
  2009年   58篇
  2008年   72篇
  2007年   50篇
  2006年   60篇
  2005年   37篇
  2004年   40篇
  2003年   39篇
  2002年   45篇
  2001年   21篇
  2000年   28篇
  1999年   25篇
  1998年   8篇
  1997年   7篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1992年   11篇
  1991年   13篇
  1990年   13篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   5篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   12篇
  1976年   6篇
  1974年   13篇
  1973年   11篇
  1970年   5篇
  1967年   7篇
排序方式: 共有1427条查询结果,搜索用时 21 毫秒
141.
Using both ZnAF-2F (a Zn2+ specific fluorophore) and 65Zn2+, we determined the rate of transporter mediated Zn2+ influx (presumably mediated by the SLC39A1 gene product, protein name hZIP1) under steady state conditions and studied the effects of extracellular acidification. When K562 erythroleukemia cells were placed in Zn2+ containing buffers (1-60 microM), the initial rate of 65Zn2+ accumulation mirrored the apparent rise in free intracellular Zn2+ concentrations sensed by ZnAF-2F. Therefore, newly transported Zn2+ equilibrated with the free intracellular Zn2+ pool sensed by ZnAF-2F. A new steady state with elevated free intracellular Zn2+ was established after about 30 min. An estimate of 11 microM for the Km and 0.203 nmol/mg/s for the Vmax were obtained for Zn2+ influx. 65Zn2+ uptake and ZnAF-2F fluorescent changes were inhibited by extracellular acidification (range tested: pH 8-6, IC50 = pH 6.34). The IC50 for proton effects was close to the pKa for histidine, suggesting conserved histidine residues present in SLC39A1 play a critical role in Zn2+ influx and are involved in the pH effect.  相似文献   
142.
Alzheimer's disease is characterized by the accumulation of amyloid-beta peptide, which is cleaved from the amyloid-beta precursor protein (APP). Reduction in levels of the potentially toxic amyloid-beta has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-beta in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.  相似文献   
143.
Innate and adaptive immune responses are initiated upon recognition of microbial molecules by Toll-like receptors (TLRs). We have investigated the importance of these receptors in the induction of pro-inflammatory cytokines and macrophage resistance to infection with Coxiella burnetii, an obligate intracellular bacterium and the etiological agent of Q fever. By using a Chinese hamster ovary/CD14 cell line expressing either functional TLR2 or TLR4, we determined that C. burnetii phase II activates TLR2 but not TLR4. Macrophages deficient for TLR2, but not TLR4, produced less tumor necrosis factor-alpha and interleukin-12 upon C. burnetii infection. Furthermore, it was found that TLR2 activation interfered with C. burnetii intracellular replication, as macrophages from TLR2-deficient mice were highly permissive for C. burnetii growth compared with macrophages from wild type mice or TLR4-deficient mice. Although LPS modifications distinguish virulent C. burnetii phase I bacteria from avirulent phase II organisms, electrospray ionization-mass spectrometry analysis showed that the lipid A moieties isolated from these two phase variants are identical. Purified lipid A derived from either phase I or phase II LPS failed to activate TLR2 and TLR4. Indeed, the lipid A molecules were able to interfere with TLR4 signaling in response to purified Escherichia coli LPS. These studies indicate that TLR2 is an important host determinant that mediates recognition of C. burnetii and a response that limits growth of this intracellular pathogen.  相似文献   
144.
145.
Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability.  相似文献   
146.
Screening an extract library of >2500 southern Australian and Antarctic marine invertebrates and algae for modulators of glycine receptor (GlyR) chloride channels identified three Irciniidae sponges that yielded new examples of a rare class of glycinyl lactam sesterterpene, ircinialactam A, 8-hydroxyircinialactam A, 8-hydroxyircinialactam B, ircinialactam C, ent-ircinialactam C and ircinialactam D. Structure–activity relationship (SAR) investigations revealed a new pharmacophore with potent and subunit selective modulatory properties against α1 and α3 GlyR isoforms. Such GlyR modulators have potential application as pharmacological tools, and as leads for the development of GlyR targeting therapeutics to treat chronic inflammatory pain, epilepsy, spasticity and hyperekplexia.  相似文献   
147.
Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.  相似文献   
148.
Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号