排序方式: 共有127条查询结果,搜索用时 15 毫秒
81.
穗长是影响水稻(Oryza sativa)产量的重要因子之一,研究水稻穗长QTL间的上位性效应对于发掘水稻产量潜力具有重要意义。该研究以16个单片段代换系(single segment substitution lines,SSSLs)和15个双片段聚合系(double segment pyramiding lines,DSPLs)为材料研究了水稻穗长QTL的加性及上位性效应。以P〈0.01为阈值,共检测到6个穗长QTL和9对基因互作座位。其中2个(Pl-2和Pl-10)是尚未报道的穗长QTL。穗长QTL互作后,一些互作对的上位性效应与单个QTL的作用方式及效应大小各不相同,预示着基因聚合后会产生不同的互作效应。该研究结果对于通过分子聚合育种手段改良穗长具有重要意义。 相似文献
82.
Deyong Ren Yunfeng Li Fangming Zhao Xianchun Sang Junqiong Shi Nan Wang Shuang Guo Yinghua Ling Changwei Zhang Zhenglin Yang Guanghua He 《Plant physiology》2013,162(2):872-884
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of the spikelet remains unclear. In this study, we identified a rice (Oryza sativa) spikelet mutant, multi-floret spikelet1 (mfs1), that showed delayed transformation of spikelet meristems to floral meristems, which resulted in an extra hull-like organ and an elongated rachilla. In addition, the sterile lemma was homeotically converted to the rudimentary glume and the body of the palea was degenerated in mfs1. These results suggest that the MULTI-FLORET SPIKELET1 (MFS1) gene plays an important role in the regulation of spikelet meristem determinacy and floral organ identity. MFS1 belongs to an unknown function clade in the APETALA2/ethylene-responsive factor (AP2/ERF) family. The MFS1-green fluorescent protein fusion protein is localized in the nucleus. MFS1 messenger RNA is expressed in various tissues, especially in the spikelet and floral meristems. Furthermore, our findings suggest that MFS1 positively regulates the expression of LONG STERILE LEMMA and the INDETERMINATE SPIKELET1 (IDS1)-like genes SUPERNUMERARY BRACT and OsIDS1.In the reproductive phase of angiosperms, the shoot meristem is transformed into an inflorescence meristem, which then produces a floral meristem from which floral organs begin to develop, according to the mechanism known as the ABCDE model (Coen and Meyerowitz, 1991; Coen and Nugent, 1994; Dreni et al., 2007; Ohmori et al., 2009). An inflorescence can be classified as determinate or indeterminate based on whether its apical meristem is transformed into a terminal floral meristem. In an indeterminate inflorescence, the lateral meristem is permanently differentiated from the apical meristem, which is not converted into the terminal floral meristem, as occurs during the development of the inflorescences of Arabidopsis (Arabidopsis thaliana) and snapdragon (Antirrhinum majus). In contrast, in a determinate inflorescence, the apical meristem is transformed into the terminal floral meristem after the production of a fixed number of lateral meristems, as occurs during the development of the inflorescences of tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum; Bradley et al., 1997; Ratcliffe et al., 1999; Sussex and Kerk, 2001; Chuck et al., 2008).In general, inflorescences in grasses consist of branches and spikelets (Coen and Nugent, 1994; Itoh et al., 2005; Kobayashi et al., 2010). In these organisms, the branch meristem is determinate. It produces several lateral spikelet meristems, followed by the final production of a terminal spikelet meristem. The spikelet, the specific unit of the grass inflorescence, comprises a pair of bracts and one to 40 florets; it shows determinacy or indeterminacy depending on the species (Clifford, 1987; Malcomber et al., 2006). In species with a determinate spikelet, such as rice (Oryza sativa), after the production of fixed lateral floral meristems, the spikelet meristems are converted into terminal floral meristems, resulting in termination of the spikelet meristem fate. In contrast, in species with an indeterminate spikelet, such as wheat (Triticum aestivum), the spikelet meristem fate is maintained continuously and produces a variable number of lateral floral meristems.In Arabidopsis, the gene TERMINAL FLOWER1 (TFL1) was shown to maintain indeterminacy in the fate of the inflorescence. In the tfl1 mutant, the inflorescence meristems were converted into floral meristems earlier than in the wild type, but the ectopic expression of TFL1 resulted in the transformation of floral meristems at a later stage of development to secondary inflorescence meristems (Bradley et al., 1997; Ratcliffe et al., 1999; Mimida et al., 2001). In rice, overexpression of either of the TFL1-like genes, RICE CENTRORADIALIS1 (RCN1) or RCN2, delayed the transition of branch meristems to spikelet meristems and finally resulted in the production of a greater number of branches and spikelets than in the wild type (Nakagawa et al., 2002; Rao et al., 2008).To date, no gene that acts to maintain the indeterminacy of the spikelet meristem has been reported. However, two classes of genes have been shown to be involved in termination of the indeterminacy of spikelet meristems. One of these is the group of terminal floral meristem identity genes. A grass-specific LEAFY HULL STERILE1 (LHS1) clade in the SEPALLATA (SEP) subfamily belongs to this class. LHS1-like genes were found to be expressed only in the terminal floral meristem in species with spikelet determinacy, which suggested that they exclusively determine the production of the terminal floral meristem, by which the spikelet meristem acquires determinacy (Cacharroón et al., 1999; Malcomber and Kellogg, 2004; Zahn et al., 2005). The other class comprises the INDETERMINATE SPIKELET1 (IDS1)-like genes, which belong to the APETALA2/ethylene-responsive factor (AP2/ERF) family. Unlike LHS1-like genes, this class of genes regulates the correct timing of the transition of the spikelet meristem to the floral meristem but does not specify the identity of the terminal floral meristem. In maize (Zea mays), loss of IDS1 function produces extra florets (Chuck et al., 1998). In addition, mutation of SISTER OF IDS1 (SID1), a paralog of IDS1 in maize, resulted in no defects in terms of spikelet development. However, the ids1+sid1 double mutant failed to generate floral organs and instead developed more bract-like structures than are found in wild-type plants (Chuck et al., 2008). The rice genome contains two IDS1-like genes, SUPERNUMERARY BRACT (SNB) and OsIDS1. Loss of activity of SNB or OsIDS1 produced extra rudimentary glumes, and snb+osids1 double mutant plants developed more rudimentary glumes than either of its parental mutants (Lee et al., 2007; Lee and An, 2012). These results revealed that the mutated IDS1-like genes prolonged the activity of the spikelet meristem.In most members of Oryzeae, the spikelet is distinct from those of other grasses, in that it comprises a pair of rudimentary glumes, a pair of sterile lemmas (empty glumes), and one floret (Schmidt and Ambrose, 1998; Ambrose et al., 2000; Kellogg, 2009; Hong et al., 2010). The rudimentary glumes are generally regarded as severely reduced bract organs, but the origin of sterile lemmas has been widely debated. Recent studies suggested that the sterile lemmas are the vestigial lemmas of two lateral florets. The gene LONG STERILE LEMMA (G1)/ELONGATED EMPTY GLUME1 (ELE1) is a member of a plant-specific gene family. In the g1/ele1 mutant, sterile lemmas were found to be homeotically transformed into lemmas (Yoshida et al., 2009; Hong et al., 2010). The OsMADS34 and EXTRA GLUME1 (EG1) genes were also shown to determine the identities of sterile lemmas. In the osmads34 and eg1 mutants, the sterile lemmas were enlarged and acquired the identities of lemmas (Li et al., 2009; Gao et al., 2010; Kobayashi et al., 2010). Additionally, the SEP-like gene LHS1/OsMADS1, which specifies the identities of both the lemma and the palea, was not expressed in sterile lemmas, and ectopic expression in sterile lemmas resulted in the transformation of sterile lemmas to lemmas (Jeon et al., 2000; Li et al., 2009; Tanaka et al., 2012). These findings suggest that the sterile lemma may be homologous to the lemma. Nevertheless, some researchers still considered that the sterile lemmas are instead vestigial bract-like structures similar to the rudimentary glumes (Schmidt and Ambrose, 1998; Kellogg, 2009; Hong et al., 2010).In this study, we isolated the rice MULTI-FLORET SPIKELET1 (MFS1) gene, which belongs to a clade of unknown function in the AP2/ERF gene family. The mutation of MFS1 was shown to delay the transformation of the spikelet meristem to the floral meristem and to result in degeneration of the sterile lemma and palea. These results suggest that MFS1 plays an important role in the regulation of spikelet determinacy and organ identity. Our findings also reveal that MFS1 positively regulates the expression of G1 and the IDS1-like genes SNB and OsIDS1. 相似文献
83.
Fangming Xiu Varun C. Anipindi Philip V. Nguyen Jeanette Boudreau Hong Liang Yonghong Wan Denis P. Snider Charu Kaushic 《PloS one》2016,11(4)
Female sex steroids, estradiol (E2) and progesterone (P4), play a key role in regulating immune responses in women, including dendritic cell (DC) development, and functions. Although the two hormones co-occur in the body of women throughout the reproductive years, no studies have explored their complex combinatorial effects on DCs, given their ability to regulate each other’s actions. We examined murine bone marrow derived dendritic cells (BMDC) differentiation and functions, in the presence of a wide range of physiological concentrations of each hormone, as well as the combination of the two hormones. E2 (10−12 to 10-8M) enhanced the differentiation of CD11b+CD11c+ DCs from BM precursor cells, and promoted the expression of CD40 and MHC Class-II, in a dose-dependent manner. In contrast, P4 (10−9 to 10-5M) inhibited DC differentiation, but only at the highest concentrations. These effects on BMDCs were observed both in the presence or absence of LPS. When both hormones were combined, higher concentrations of P4, at levels seen in pregnancy (10-6M) reversed the E2 effects, regardless of the concentration of E2, especially in the absence of LPS. Functionally, antigen uptake was decreased and pro-inflammatory cytokines, IL-12, IL-1 and IL-6 production by CD11b+CD11c+ DCs, was increased in the presence of E2 and these effects were reversed by high concentrations of P4. Our results demonstrate the distinct effects of E2 and P4 on differentiation and functions of bone marrow myeloid DCs. The dominating effect of higher physiological concentrations of P4 provides insight into how DC functions could be modulated during pregnancy. 相似文献
84.
85.
Li J Shi C Gao Y Wu K Shi P Lai C Chen L Wu F Tian C 《Journal of molecular biology》2012,415(2):382-392
Rv0899 from Mycobacterium tuberculosis belongs to the OmpA (outer membrane protein A) family of outer membrane proteins. It functions as a pore-forming protein; the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. Rv0899 has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Based on many bacterial physiological data and recent structural studies, it was proposed that Rv0899 forms an oligomeric channel to carry out such functions. In this work, biochemical and structural data obtained from solution NMR and EPR spectroscopy indicated that Rv0899 is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899 was able to interact with Zn(2+) ions, which may indicate a role for Rv0899 in the process of Zn(2+) acquisition. 相似文献
86.
Alkali hydrothermal experiments with glycolaldehyde were carried out at 300 degrees C. Glycolaldehyde was converted into lactic acid in a yield of 28% based on the starting carbon mass of glycolaldehyde. A conversion pathway for glycolaldehyde into lactic acid is proposed and our results suggest that the pathway via glycolaldehyde is also important in the conversion of glucose into lactic acid. 相似文献
87.
Siyuan Shao Fangsheng Fu Ziyi Wang Fangming Song Chen Li Zuo-xing Wu Jiaxing Ding Kai Li Yu Xiao Yiji Su Xixi Lin Guixin Yuan Jinmin Zhao Qian Liu Jiake Xu 《Journal of cellular physiology》2019,234(8):12701-12713
Osteolytic bone diseases are closely linked to the over-activation of osteoclasts and enhancement of bone resorption. It has become a major health issue in orthopedic practice worldwide. Inhibition of osteoclasts is proposed to be the main treatment for osteolytic disorders. Diosmetin (DIO) is a natural flavonoid with properties of antioxidant, anti-infection, and antishock. The effect of DIO on osteoclast differentiation is poorly understood. In this study project, we found that DIO could inhibit osteoclastic formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in a dose-dependent manner. The expression of the osteoclast differentiation marker genes, cathepsin K, nuclear factor of activated T-cells 1 (NFATc1), Acp5, Ctr, Atp6v0d2, and Mmp9 were also decreased by the treatment of DIO. In addition, DIO attenuated the formation of actin ring and the ability of bone resorption. Further, the western blotting showed that DIO inhibits the phosphorylation of the mitogen-activated protein kinases signaling pathway induced by RANKL, accompanied by the downregulation of NFATc1 and c-Fos expression. We also found that DIO could reduce the accumulation of reactive oxygen species (ROS) induced by RANKL. In vivo, the study revealed that DIO can significantly reduce LPS-induced osteolysis in mice. Collectively, our study shows that DIO can inhibit osteoclast formation and activation, and could serve as a potential therapeutic drug for osteolytic bone diseases. 相似文献
88.
用红外指纹光谱的聚类分析法对女贞属的植物来源进行生药学鉴定。此法利用红外指纹图谱确定贵州多个产地的苦丁茶的原植物来源是女贞属植物粗壮女贞。本方法具有方便、可靠,重复性好的特点,可用于苦丁茶的生药学鉴别。 相似文献
89.
Xiang Wang Fangming Wang Ningwei Sun Lijun Zhang 《Saudi Journal of Biological Sciences》2021,28(4):2598-2601
Stress cardiomyopathy (SC) was first reported in the year 1983. It is narrated as critical but quite commutative left ventricular (LV) malfunction mostly caused by poignant or psychological disorder. Numerous variations of SC have been described as well as reverse stress cardiomyopathy (rSC) which is an adaptation identified by the decreased muscle movement related with hyperkinesis that reconciles impetuously. The signature of rSC is a medical demonstration alike to syndrome by an acute coronary, with no obvious difficult coronary artery disease. The occurrence of SC is approximated to be 4% of all victims conferring with gleaned syndrome by acute coronary. The portion of victims conferring with the rSC transfiguration out of all SC patients has been inconstant, varying from 1 to 24%. Reverse stress cardiomyopathy cases are found to be common with young people, less decrease in left ventricular ejection fraction (LVEF) and more neurological disease compared to the SC. While the correct phenomenon of rSC is undetermined, postulated methods comprises of coronary microvasculature impairment, coronary artery spasm, and estrogen deficiency. Patients with rSC typically suffer with chest pain after an emotional or Psychological stressful event. The rSC can also be happened by general anesthesia, or neurological conditions. The diagnosis of rSC demands the presence of new electrocardiogram (EKG) abnormalities or elevated cardiac troponin, and absence of obstructive coronary disease, pheochromocytoma, or myocarditis. The consideration of rSC is quite analogous to that of SC, which is predominantly supportive with the treatment of complications. The recrudescence rate of rSC is around 12%. The most frequent complications of rSC include pericardial effusions, and development of LV thrombi. 相似文献