首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92602篇
  免费   6746篇
  国内免费   6291篇
  2024年   201篇
  2023年   1256篇
  2022年   2939篇
  2021年   4870篇
  2020年   3193篇
  2019年   4016篇
  2018年   3956篇
  2017年   2866篇
  2016年   4053篇
  2015年   5844篇
  2014年   6887篇
  2013年   7247篇
  2012年   8494篇
  2011年   7740篇
  2010年   4483篇
  2009年   4186篇
  2008年   4776篇
  2007年   4147篇
  2006年   3533篇
  2005年   2822篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
db—cAMP对转化细胞钙调素基因表达与细胞骨架的影响   总被引:5,自引:0,他引:5  
We have demonstrated that the distribution of microtubules (MT), microfilaments (MF) and fibronectin (FN) were diminished, while the gene expression of the calmodulin and c-fos enhanced in the transformed C3 H10 T1/2 cells. After treatment with 1 mM db-cAMP for 1 hr. and 2 hrs., there was an early and rapidly reduced in gene expression of calmodulin and c-fos respectively. After db-cAMP treatment for 4-5 days, the number of Capping cells of ConA binding decreased significantly and the cell surface microvilli decreased also. The growth of treated cells was inhibited markedly. By using 4F1 cDNA probe, which is preferentially expressed in G1 phase, we have found that the db-cAMP treated cells were accumulated at G1 phase. Of particular interest is the fact that the distribution of microtubules, microfilaments and fibronectin were recovered after treatment with 1 mM db-cAMP for 6 days. It is suggested that the inhibition of proliferation, alteration of phenotype and recovery of cytoskeleton in transformed cells after treatment with db-cAMP are related to the inhibition of gene expression of calmodulin.  相似文献   
992.
993.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   
994.
A panel of 17 myelin basic protein (MBP)-specific T lymphocyte clones were generated from four multiple sclerosis (MS) patients. All T cell clones expressed CD4 phenotype and 14 clones exhibited substantial cytotoxic activity on MBP-coated target cells. T cell recognition sites of the clones on human MBP were identified by using MBP fragments and synthetic peptides. Despite the fact that at least three epitopes were defined, these T cell clones displayed a striking bias to the C-terminal peptide 149-171 independent of differences in HLA-DR and DQ expression. In addition, the T cell responses of the clones appeared to be restricted by HLA-DR molecules irrespective of peptide specificities. The present study suggests an immunodominant property of the C-terminal peptide for HLA-DR-restricted T cell responses to MBP. However, its association with encephalitogenicity in humans and its potential pathologic importance in MS await further clarification.  相似文献   
995.
Summary VIP- and substance P-like immunoreactivities were found in considerable concentrations (VIP: 17.3±4.8 pmol/g, mean ± SEM; substance P:11.1±1.8 pmol/g) in the uveal portion of the guinea pig eye.d Immunocytochemistry localised these two regulatory peptides to nerve fibres found principally in a plexus in the iris (substance P) and in an extensive network surrounding the blood vessels of the choroid (VIP). A remarkable anatomical demarcation of the two types of peptide-containing nerves was established by the staining of substance P-containing nerves, which stops at the level of the ciliary body. This uveal area is known to be involved in the ocular responses to nociceptive stimuli. At the ultrastructural level, immunoreactivity for both peptides was localised to distinct subpopulations of p-type nerves, distinguishable by the size of their large dense-cored vesicles. Those immunoreactive for VIP were significantly larger (p<0.0005) than those immunoreactive for substance P (95±7 nm and 82±9 nm respectively; mean ± SD). Interruption of the trigeminal pathway produced a remarkable decrease of substance P immunoreactivity in the anterior portion of the uvea (9.1±1.5 pmol/g, mean ± SEM, control; 5.3±1.3 pmol/g, denervated), but not of VIP immunoreactivity in the choroid. Following colchicine treatment, VIP-immunoreactive neuronal cell bodies were localised in the choroid. The separate anatomical localisations and distributions of the two uveal peptides appear to be related to their different origins and functional roles in the response of the eye to noxious stimuli.To whom offprint requests should be sent  相似文献   
996.
997.
Soil organic carbon (SOC) dynamics is regulated by a complex interplay of factors such as climate and potential anthropogenic activities. Livestocks play a key role in regulating the C cycle in grasslands. However, the interrelationship between SOC and these drivers remains unclear at different soil layers, and their potential relationships network have rarely been quantitatively assessed. Here, we completed a six‐year manipulation experiment of grazing exclusion (no grazing: NG) and increasing grazing intensity (light grazing: LG, medium grazing: MG, heavy grazing: HG). We tested light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC) in 12 plots along grazing intensity in three soil layers (topsoil: 0–10 cm, mid‐soil: 10–30 cm, subsoil: 30–50 cm) to assess the drivers of SOC. Grazing significantly reduced SOC of the soil profile, but with significant depth and time dependencies. (1) SOC and SOC stability of the topsoil is primarily regulated by grazing duration (years). Specifically, grazing duration and grazing intensity increased the SOC lability of topsoil due to an increase in LFOC. (2) Grazing intensity was the major factor affecting the mid‐soil SOC dynamics, among which MG had significantly lower SOC than did NG. (3) Subsoil organic carbon dynamics were mainly regulated by climatic factors. The increase in mean annual temperature (MAT) may have promoted the turnover of LFOC to HFOC in the subsoil. Synthesis and applications. When evaluating the impacts of grazing on soil organic fraction, we need to consider the differences in sampling depth and the duration of grazing years. Our results highlight that the key factors influencing SOC dynamics differ among soil layers. Climatic and grazing factors have different roles in determining SOC in each soil layer.  相似文献   
998.
Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease–related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA–binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum–Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington’s disease.  相似文献   
999.
1000.
不同生境草鱼肠道微生物组成和群落特征分析   总被引:1,自引:0,他引:1  
[目的]分析不同生境来源的草鱼前肠、中肠和后肠的微生物组成和群落特征.[方法]利用16S rRNA高通量测序技术比较河流、湖泊、高密度池塘养殖与水库低密度养殖4种不同生境来源的草鱼其前、中、后肠的微生物组成和群落特征.[结果]Venn图、稀释性曲线和Alpha指数分析结果显示,前肠微生物群落多样性以养殖生境草鱼更高,而...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号