Hydrangea bretschneideri Dipp is a highly popular ornamental plant for garden decoration. Genetic engineering
technology has been successfully used in many plant species, but it is limited in Hydrangea. Here we established
an efficient regeneration system by using stem segments as explants for the first time. In our study, the plant
growth regulators (PGRs) were evaluated at the different regeneration processes, including axillary shoots regeneration and root induction. We found that the optimal concentration for axillary buds’ induction was 2.0 mgL−1
6-BA and 0.5 mgL−1
1 IAA, its highest induction rate was 70%. Moreover, the highest axillary shoots proliferation
coefficient was 10.7 on the Murashige and Skoog (MS) medium with 2.0 mgL−1 6-benzyladenine (BA), 0.2 mgL−1
indole-3-butyric acid (IBA), and 1.0 mgL−1 gibberellin A3 (GA3). The highest frequency of root induction was
80.0 ± 0.06% by culturing the elongated shoots in 1/2 MS medium containing 0.1 mgL−1 IBA. In summary,
our study will provide an effective technology for large-scale propagation and important pathway for promoting
the popularization and application of Hydrangea bretschneideri Dipp. 相似文献
Hyaluronic acid (HA), a major component of the extracellular matrix, is essential to inflammatory regulation. 4-Methylumbelliferone (4-mu), as the specific inhibitor of HA synthesis, is an anti-inflammatory in multiple systems. However, there have been no studies, to our knowledge, regarding 4-mu treatment in pulp inflammation. Therefore, the purpose of this study was to investigate the effects of 4-mu on biological behaviors in human dental pulp stem cells (hDPSCs) exposed to lipopolysaccharide (LPS) in vitro. hDPSCs were exposed to LPS to construct the inflammation model in vitro. Immunocytochemistry, quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, scratch/Transwell assay, and alizarin red staining/alkaline phosphatase staining were selected to explore the effect of 4-mu on the expression of inflammatory factors, cell proliferation, cell migration, and the odontogenic differentiation ability of hDPSCs. LPS stimulated hDPSCs to highly express the related inflammatory factors and CD44 (the major HA receptor), which were all inhibited by 0.1 mM of 4-mu. In addition, the cell proliferation ability of hDPSCs was suppressed by 4-mu, while cell migration and odontogenic differentiation abilities were significantly improved under inflammation. In conclusion, 4-mu suppressed inflammatory cytokines in inflamed hDPSCs and had a positive effect on the migration and odontogenic differentiation of hDPSCs. 相似文献
The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.
Recent studies have supported a role for both newer and more established vitamin D compounds in improving proteinuria, although systematic evaluation is lacking. Furthermore, concerns remain regarding the influence of vitamin D on the progression of renal function. We analyzed the efficacy and safety of vitamin D in non-dialysis patients and compared the use of newer versus established vitamin D compounds by performing a meta-analysis of randomized controlled trials.
Design
A literature search of PubMed (1975 to September, 2012), EMBASE.com (1966 to September, 2012) and Ovid EBM Reviews (through September, 2012) was conducted.
Results
Eighteen studies were eligible for final inclusion; of these, six explored the effects of vitamin D on proteinuria, twelve studied the effects of supplementation on renal function, and fifteen discussed the incidence of hypercalcemia. Compared to the placebo or no interference, both the newer and established vitamin D sterols reduced proteinuria to a similar extent (RR, 2.00; 95% CI, 1.42 to 2.81). No decrease in the glomerular filter rate was observed (SMD, −0.10; 95%CI, −0.24 to 0.03), and the risk for dialysis initiation was 1.48 (95% CI, 0.54 to 4.03) with vitamin D treatment. Additionally, there was an increased risk of hypercalcemia for patients treated with either newer or established vitamin D compounds as compared with the controls (RR, 4.78; 95% CI, 2.20 to 10.37). The head-to-head studies showed no differences in the effects of either newer or established compounds on proteinuria or the risk of hypercalcemia. No serious adverse events were associated with the administration of vitamin D.
Conclusions
Vitamin D therapy appears to decrease proteinuria and have no negative influence on renal function in non-dialysis patients. But the occurrence of hypercalcemia should be evaluated when vitamin D is provided. No superiority for newer versus established vitamin D analogue is found. 相似文献