首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102492篇
  免费   7698篇
  国内免费   7649篇
  117839篇
  2024年   235篇
  2023年   1384篇
  2022年   3195篇
  2021年   5261篇
  2020年   3539篇
  2019年   4413篇
  2018年   4330篇
  2017年   3159篇
  2016年   4418篇
  2015年   6470篇
  2014年   7643篇
  2013年   7996篇
  2012年   9508篇
  2011年   8607篇
  2010年   5056篇
  2009年   4718篇
  2008年   5377篇
  2007年   4687篇
  2006年   4066篇
  2005年   3242篇
  2004年   2676篇
  2003年   2424篇
  2002年   1952篇
  2001年   1653篇
  2000年   1506篇
  1999年   1548篇
  1998年   933篇
  1997年   987篇
  1996年   893篇
  1995年   855篇
  1994年   765篇
  1993年   616篇
  1992年   755篇
  1991年   600篇
  1990年   493篇
  1989年   372篇
  1988年   303篇
  1987年   248篇
  1986年   209篇
  1985年   239篇
  1984年   139篇
  1983年   129篇
  1982年   65篇
  1981年   36篇
  1980年   29篇
  1979年   25篇
  1978年   10篇
  1976年   11篇
  1975年   11篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Many N2-fixing organisms can turn off nitrogenase activity in the presence of NH4 + and turn it on again when the NH4 + is exhausted. One of the most interesting systems for accomplishing this is by covalent modification of one subunit of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). The system can be reactivated when NH4 + is exhausted, by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the inactivating group. It is fascinating that some species of the genusAzospirillum possess the DRAT and DRAG systems (A. lipoferum andA. brasilense), whereasA. amazonense in the same genus lacks DRAT and DRAG.A. amazonense responds to NH4 + but does not exhibit modification of dinitrogenase reductase characteristic of the action of DRAT. However, it has been possible to clone DRAT and DRAG and to introduce them intoA. amazonense, whereupon they become functional in this organism. The DRAT and DRAG system does not appear to function inAcetobacter diazotrophicus, an organism isolated from sugar cane, that fixes N2 at a pH as low as 3.0.A. diazotrophicus does show a rather sluggish response to NH4 +. A level of about 10 M NH4 + is required to switch off the system. The response to NH4 + is influenced by the dissolved oxygen concentration (DOC) as has been reported forAzospirillum sp. A DOC in equilibrium with 0.1 to 0.2 kPa O2 seems optimal for the response inA. diazotrophicus.  相似文献   
63.
64.
F Fang  J W Newport 《Cell》1991,66(4):731-742
Xenopus eggs contain two distinct cdc2 homologs of 34 and 32 kd. We show that the 32 kd cdc2 protein, like the 34 kd protein, is a kinase. However, unlike the 34 kd homolog, the 32 kd cdc2 kinase activity does not decrease dramatically at the end of mitosis. The 32 kd protein does not associate with mitotic cyclins B1 and B2 but does associate with cyclin A and a novel doublet of proteins of 54 kd that may regulate its activity. We also show that depletion of the 32 kd cdc2 homolog from a Xenopus extract blocks DNA replication, but does not inhibit entry into mitosis. By contrast, depletion of the 34 kd cdc2 homolog or absence of mitotic cyclins from an extract does not inhibit replication, but does block entry into mitosis. Our results indicate that in higher eukaryotes, DNA replication (G1-S) and mitosis (G2-M) may be controlled by distinctly different cdc2 proteins.  相似文献   
65.
Ribose-binding protein is a bifunctional soluble receptor found in the periplasm of Escherichia coli. Interaction of liganded binding protein with the ribose high affinity transport complex results in the transfer of ribose across the cytoplasmic membrane. Alternatively, interaction of liganded binding protein with a chemotactic signal transducer, Trg, initiates taxis toward ribose. We have generated a functional map of the surface of ribose-binding protein by creating and analyzing directed mutations of exposed residues. Residues in an area on the cleft side of the molecule including both domains have effects on transport. A portion of the area involved in transport is also essential to chemotactic function. On the opposite face of the protein, mutations in residues near the hinge are shown to affect chemotaxis specifically.  相似文献   
66.
Overexpression of the full-length GTPase-activating protein (GAP) has recently been shown to suppress c-ras transformation of NIH 3T3 cells but not v-ras transformation (36). Here, we show that focus formation induced by c-src was inhibited by approximately 80% when cotransfected with a plasmid encoding full-length GAP. In a similar assay, focus formation by the activated c-src (Tyr-527 to Phe) gene was inhibited by 33%. Cotransfection of the GAP C terminus coding sequences (which encode the GTPase-accelerating domain) with c-src or c-src527F inhibited transformation more efficiently than did the full-length GAP, while the GAP N terminus coding sequences had no effect on src transformation. When cells transformed by c-ras, c-src, c-src527F, or v-src were transfected with GAP or the GAP C terminus sequence in the presence of a selectable marker, 40 to 85% of the resistant colonies were found to be morphologically revertant. The GAP C terminus induced reversion of each src-transformed cell line more efficiently than the full-length GAP, but this was not the case for reversion of c-ras transformation. Biochemical analysis of v-src revertant subclones showed that the reversion correlated with overexpression of full-length GAP or the GAP C terminus. There was no decrease in the level of pp60src expression or the level of protein-tyrosine phosphorylation in vivo. We conclude that GAP can suppress transformation by src via inhibition of endogenous ras activity, without inhibiting in vivo tyrosine phosphorylation of cellular proteins induced by pp60src, and that src may negatively regulate GAP's inhibitory action on endogenous ras.  相似文献   
67.
68.
A procedure is described for linking nucleosides covalently to controlled pore glass or cross-linked polystyrene supports by means of an oxalyl anchor. Though stable to triethylamine and diisopropylamine, the nucleoside-oxalyl link can be cleaved within a few minutes at room temperature with ammonium hydroxide in methanol. This new anchor can be used in automated synthesis of conventional oligonucleotides. The primary value, however, is that it enables one to employ solid support methodology to synthesize a variety of base-sensitive oligonucleotide derivatives, as illustrated here by synthesis of oligomers with base protecting groups intact and with methyl phosphotriester groups at the internucleoside links.  相似文献   
69.
Summary Most individuals with osteogenesis imperfecta (OI) are heterozygous for dominant mutations in one of the genes that encode the chains of type I collagen. Each of the more than 30 mutations characterized to date has been unique to the affected member (s) of the family. We have determined that two individuals with a progressive deforming variety of OI, OI type III, have the same new dominant mutation [1(I)gly154 to arg] and that two unrelated infants with perinatal lethal OI, OI type II, share a second new dominant muation [1(I)gly1003 to ser]. These mutations occurred at CpG dinucleotides, in a manner consistent with deamination of a methylated cytosine residue, and raise the possibility that CpG dinucleotides are common sites of recurrent mutations in collagen genes. Further, these findings confirm that the OI type-III phenotype, previously thought to be inherited in an autosomal recessive manner, can result from new dominant mutations in the COL1A1 gene of type-I collagen.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号