首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13708篇
  免费   1201篇
  国内免费   1490篇
  16399篇
  2024年   41篇
  2023年   196篇
  2022年   419篇
  2021年   644篇
  2020年   522篇
  2019年   596篇
  2018年   544篇
  2017年   433篇
  2016年   584篇
  2015年   908篇
  2014年   1044篇
  2013年   1086篇
  2012年   1406篇
  2011年   1210篇
  2010年   743篇
  2009年   682篇
  2008年   795篇
  2007年   681篇
  2006年   650篇
  2005年   505篇
  2004年   416篇
  2003年   365篇
  2002年   290篇
  2001年   204篇
  2000年   187篇
  1999年   170篇
  1998年   131篇
  1997年   108篇
  1996年   89篇
  1995年   86篇
  1994年   100篇
  1993年   60篇
  1992年   78篇
  1991年   70篇
  1990年   41篇
  1989年   44篇
  1988年   30篇
  1987年   31篇
  1986年   27篇
  1985年   32篇
  1984年   16篇
  1983年   11篇
  1982年   11篇
  1981年   13篇
  1980年   9篇
  1978年   10篇
  1976年   10篇
  1975年   11篇
  1973年   8篇
  1970年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
52.
Fifty normal noninfarct patients and 12 cases with infarcts of the cerebrum were examined with routine magnetic resonance imaging and echo-planar diffusion-weighted imaging. The diffusion-weighted three-dimensional images were reconstructed with volume-rendering processing on workstation. Precentral gyrus, post-central gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown of all structures with an arbitrary score of 2.61–2.77. Supramarginal gyrus, middle frontal gyrus, inferior frontal gyrus and lateral sulcus were clearly shown in the majority of the cerebra with average scores of 2.0–2.49; angular gyrus, inferior frontal sulcus and superior temporal gyrus were not demonstrated satisfactorily and their average scores were 1.67–1.89. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus were difficult to identify, and thus had average scores of 0.87–1.26. Brain surface structures were better displayed in the older group of individuals than in the younger group. The structures in the 12 cases with acute or chronic cerebrum infarcts were also satisfactorily demonstrated with this new technique.  相似文献   
53.
Experimental residual dipolar couplings (RDCs) in combination with structural models have the potential for accelerating the protein backbone resonance assignment process because RDCs can be measured accurately and interpreted quantitatively. However, this application has been limited due to the need for very high-resolution structural templates. Here, we introduce a new approach to resonance assignment based on optimal agreement between the experimental and calculated RDCs from a structural template that contains all assignable residues. To overcome the inherent computational complexity of such a global search, we have adopted an efficient two-stage search algorithm and included connectivity data from conventional assignment experiments. In the first stage, a list of strings of resonances (CA-links) is generated via exhaustive searches for short segments of sequentially connected residues in a protein (local templates), and then ranked by the agreement of the experimental 13Cα chemical shifts and 15N-1H RDCs to the predicted values for each local template. In the second stage, the top CA-links for different local templates in stage I are combinatorially connected to produce CA-links for all assignable residues. The resulting CA-links are ranked for resonance assignment according to their measured RDCs and predicted values from a tertiary structure. Since the final RDC ranking of CA-links includes all assignable residues and the assignment is derived from a “global minimum”, our approach is far less reliant on the quality of experimental data and structural templates. The present approach is validated with the assignments of several proteins, including a 42 kDa maltose binding protein (MBP) using RDCs and structural templates of varying quality. Since backbone resonance assignment is an essential first step for most of biomolecular NMR applications and is often a bottleneck for large systems, we expect that this new approach will improve the efficiency of the assignment process for small and medium size proteins and will extend the size limits assignable by current methods for proteins with structural models.  相似文献   
54.
杜氏盐藻rbcS启动子的克隆和功能分析   总被引:2,自引:0,他引:2  
为提高转基因盐藻的表达效率,利用基因组步行方法和巢式PCR,从盐藻中克隆了1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)的小亚基基因rbcS 的5'上游调控序列,并对其进行序列分析和转基因功能分析。采用Dra I、EcoR V、Pvu II和Stu I四种平端限制内切酶分别酶切盐藻基因组DNA,并与接头连接,构建基因组步行文库GWL 1、GWL 2、GWL 3和GWL 4;设计特异引物从这四种文库中扩增rbcS基因的5'上游调控序列。在GWL 1、GWL 4中分别扩增出约1.2 kb的片段。对该序列的分析表明,它的3'端与已知盐藻rbcS cDNA 的5'端序列完全一致,说明是该基因的5'端上游区,并且包含多个与转录调控有关的保守序列(如TATA-box、CAAT-box),富含GT的重复序列。此序列EcoR I下游的片段与除草剂抗性基因bar相融合,构建表达载体,电击法转化盐藻。通过对转化藻株的抗性筛选以及PCR和Southern blot检测,表明该区域能驱动外源基因bar在转基因盐藻中的表达,推断是盐藻rbcS基因的启动子调控区。  相似文献   
55.
56.
Strains (n = 99) of Staphylococcus aureus isolated from a large number of clinical sources and tested for methicillin sensitivity were analysed by MALDI-TOF-MS using the Weak Cation Exchange (CM10) ProteinChip Array (designated SELDI-TOF-MS). The profile data generated was analysed using Artificial Neural Network (ANN) Analysis modelling techniques. Seven key ions identified by the ANNs that were predictive of MRSA and MSSA were validated by incorporation into a model. This model exhibited an area under the ROC curve value of 0.9147 indicating the potential application of this approach for rapidly characterising MRSA and MSSA isolates. Nearly all strains (n = 97) were correctly assigned to the correct group, with only two aberrant MSSA strains being misclassified. However, approximately 21% of the strains appeared to be in a process of transition as resistance to methicillin was being acquired.  相似文献   
57.
58.
Binding, internalization, and degradation of 125I-labeled, antiproliferative, or nonantiproliferative heparan sulfate by human embryonic lung fibroblasts was investigated. Both L-iduronate-rich, antiproliferative heparan sulfate species as well as L-iduronate-poor, inactive ones were bound to trypsin-releasable, cell-surface sites. Both heparan sulfate types were bound with approximately the same affinity to one high-affinity site (Kd approximately 10−8 M) and to one (Kd approximately 10−6 M), respectively. Results of Hill-plot analysis suggested that the two sites are independent. Competition experiments with unlabeled glycosaminoglycans indicated that the binding sites had a selective specificity for sulfated, L-iduronate-rich heparan sulfate. Dermatan sulfate, which is also antiproliferative, was weakly bound to the cells. The antiproliferative effects of heparan and dermatan sulfate appeared to be additive. Hence, the two glycosaminoglycans probably exert their effect through different mechanisms. At concentrations above 5 μg/ml (approximately 10−7 M), heparan sulfate was taken up by human embryonic lung fibroblasts, suggesting that the low-affinity site represents an endocytosis receptor. The antiproliferative effect of L-iduronate-rich heparan sulfate species was also exerted at the same concentrations. The antiproliferative species was taken up to a greater degree than the inactive one, suggesting a requirement for internalization. However, competition experiments with dextran sulfate suggested that both the high-affinity and the low-affinity sites are involved in mediating the antiproliferative effect. Structural analysis of the inactive and active heparan sulphate preparations indicated that although sulphated L-iduronate appears essential for antiproliferative activity, it is not absolutely required for binding to the cells. Degradation of internalized heparan sulfate was analyzed by polyacrylamide gel electrophoresis using a sensitive detection technique. The inactive species was partially degraded, whereas the antiproliferative one was only marginally affected. J. Cell. Biochem. 64:595–604. © 1997 Wiley-Liss, Inc.  相似文献   
59.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   
60.
Rice LTRPK1, which encodes a member of the casein kinase I family, has been reported to be involved in root development, hormone response, and metabolic processes. Here we further show that LTRPK1 participates in stress resistance by regulating cytoskeleton rearrangement and formation of cold tolerance and adaptation. Semiquantitative RT-PCR analysis revealed enhanced expression of LTRPK1 in plants subject to low-temperature stress at 4 °C, suggesting a role in low-temperature-related cell responses and signal transduction pathways. Further analysis of LTRPK1-deficient transgenic plants showed that under low-temperature treatment, the growth rate of transgenic plant primary roots, which is commonly used as an indicator for cold stress response abilities, was less inhibited than that of control plants. Moreover, damage to the plasma membrane of root cells in LTRPK1-deficient plants was greater than that of controls as measured by relative electrical conductivity (REC). The malondialdehyde (MDA) content of LTRPK1-deficient plants also increased over that of the control, indicating increased plasma membrane permeability. Further immunofluorescence localization observations indicated that microtubules of transgenic plants subject to low temperature disassembled more rapidly, whereas the control plant microtubules in most cells of the root elongation zone kept their normal habitus, which suggested that LTRPK1-deficient plants had reduced capacity to resist low-temperature stress through regulation of microtubule assembly. These results demonstrate involvement of LTRPK1 in low-temperature stress and provide new insight for rice breeding and germplasm innovation to improve crop cold tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号