首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102482篇
  免费   7696篇
  国内免费   7661篇
  117839篇
  2024年   235篇
  2023年   1384篇
  2022年   3195篇
  2021年   5261篇
  2020年   3539篇
  2019年   4413篇
  2018年   4330篇
  2017年   3159篇
  2016年   4418篇
  2015年   6470篇
  2014年   7643篇
  2013年   7996篇
  2012年   9508篇
  2011年   8607篇
  2010年   5056篇
  2009年   4718篇
  2008年   5377篇
  2007年   4687篇
  2006年   4066篇
  2005年   3242篇
  2004年   2676篇
  2003年   2424篇
  2002年   1952篇
  2001年   1653篇
  2000年   1506篇
  1999年   1548篇
  1998年   933篇
  1997年   987篇
  1996年   893篇
  1995年   855篇
  1994年   765篇
  1993年   616篇
  1992年   755篇
  1991年   600篇
  1990年   493篇
  1989年   372篇
  1988年   303篇
  1987年   248篇
  1986年   209篇
  1985年   239篇
  1984年   139篇
  1983年   129篇
  1982年   65篇
  1981年   36篇
  1980年   29篇
  1979年   25篇
  1978年   10篇
  1976年   11篇
  1975年   11篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund’s adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.  相似文献   
73.
Acute lung injury (ALI) is a potentially life-threatening, devastating disease with an extremely high rate of mortality. The underlying mechanism of ALI is currently unclear. In this study, we aimed to confirm the hub genes associated with ALI and explore their functions and molecular mechanisms using bioinformatics methods. Five microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs) and the key genes were identified via the protein-protein interaction (PPI) network. Lipopolysaccharide intraperitoneal injection was administered to establish an ALI model. Overall, 40 robust DEGs, which are mainly involved in the inflammatory response, protein catabolic process, and NF-κB signaling pathway were identified. Among these DEGs, we identified two genes associated with ALI, of which the CAV-1/NF-κB axis was significantly upregulated in ALI, and was identified as one of the most effective targets for ALI prevention. Subsequently, the expression of CAV-1 was knocked down using AAV-shCAV-1 or CAV-1-siRNA to study its effect on the pathogenesis of ALI in vivo and in vitro. The results of this study indicated that CAV-1/NF-κB axis levels were elevated in vivo and in vitro, accompanied by an increase in lung inflammation and autophagy. The knockdown of CAV-1 may improve ALI. Mechanistically, inflammation was reduced mainly by decreasing the expression levels of CD3 and F4/80, and activating autophagy by inhibiting AKT/mTOR and promoting the AMPK signaling pathway. Taken together, this study provides crucial evidence that CAV-1 knockdown inhibits the occurrence of ALI, suggesting that the CAV-1/NF-κB axis may be a promising therapeutic target for ALI treatment.Subject terms: Cell signalling, Respiratory tract diseases  相似文献   
74.
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.  相似文献   
75.
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.  相似文献   
76.
The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour.  相似文献   
77.
There are few reports of rhabdomyolysis caused by anticoagulants, and it is extremely rare for it to be caused by dabigatran etexilate. An 86-year-old female experienced sudden muscle weakness and pain, a significant increase in Creatine kinase, and renal impairment after oral administration of dabigatran etexilate for 3 weeks. The enhanced thigh MRI showed abnormal signal in multiple thigh muscle groups, indicating that the lesions should be considered inflammatory diseases. In conclusion, the possibility of rhabdomyolysis should be ruled out when muscle weakness and myalgia occur at the beginning of dabigatran etexilate treatment.  相似文献   
78.
谭清苏铁性别相关的RAPD标记研究   总被引:1,自引:0,他引:1  
以谭清苏铁(Cycas tanqingii D.Y.Wang)雌雄植株半年生羽叶为材料,用优化的CTAB法分别提取其全基因组DNA,进行RAPD单因子梯度实验和正交实验以优化扩增条件。应用160个RAPD随机引物检测基因组DNA,雌雄植株均扩增出1450多条带,其中引物S0465扩增出与谭清苏铁雌株高度相关的RAPD标记,其大小约为500bp,该标记与雄株没有关联。  相似文献   
79.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   
80.
The underlying ionic mechanisms of ischemic-induced arrhythmia were studied by the computer simulation method. To approximate the real situation, ischemic cells were simulated by considering the three major component conditions of acute ischemia (elevated extracellular K(+) concentration, acidosis and anoxia) at the level of ionic currents and ionic concentrations, and a round ischemic zone was introduced into a homogeneous healthy sheet to avoid sharp angle of the ischemic tissue. The constructed models were solved using the operator splitting and adaptive time step methods, and the perturbation finite difference (PFD) scheme was first used to integrate the partial differential equations (PDEs) in the model. The numerical experiments showed that the action potential durations (APDs) of ischemic cells did not exhibited rate adaptation characteristic, resulting in flattening of the APD restitution curve. With reduction of sodium channel availability and long recovery of excitability, refractory period of the ischemic tissue was significantly prolonged, and could no longer be considered as same as APD. Slope of the conduction velocity (CV) restitution curve increased both in normal and ischemic region when pacing cycle length (PCL) was short, and refractory period dispersion increased with shortening of PCL as well. Therefore, dynamic changes of CV and dispersion of refractory period rather than APD were suggested to be the fundamental mechanisms of arrhythmia in regional ischemic myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号