首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12239篇
  免费   1110篇
  国内免费   1251篇
  2024年   49篇
  2023年   213篇
  2022年   456篇
  2021年   736篇
  2020年   515篇
  2019年   593篇
  2018年   572篇
  2017年   431篇
  2016年   575篇
  2015年   813篇
  2014年   968篇
  2013年   975篇
  2012年   1128篇
  2011年   1013篇
  2010年   574篇
  2009年   550篇
  2008年   641篇
  2007年   546篇
  2006年   430篇
  2005年   344篇
  2004年   327篇
  2003年   272篇
  2002年   272篇
  2001年   191篇
  2000年   171篇
  1999年   155篇
  1998年   112篇
  1997年   101篇
  1996年   101篇
  1995年   75篇
  1994年   86篇
  1993年   59篇
  1992年   70篇
  1991年   73篇
  1990年   51篇
  1989年   34篇
  1988年   42篇
  1987年   23篇
  1986年   32篇
  1985年   31篇
  1984年   20篇
  1983年   27篇
  1982年   16篇
  1980年   14篇
  1979年   14篇
  1977年   11篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
152.
153.
Brassica rapa L., also called NIUMA, is used empirically in Tibetan medicine for its antioxidant, anti‐inflammatory and antiradiation activities. This study explored the hepatoprotective effects of B. rapa polysaccharides (BRPs) on acute liver injury induced by carbon tetrachloride (CCl4) in mice and the underlying mechanisms. Mice were treated with CCl4 after the oral administration of BRPs (55, 110 and 220 mg/kg) or bifendate (100 mg/kg) for 7 days. Blood and liver samples of mice were collected for analysis after 24 h. The ALP, ALT and AST levels and the biological activities of SOD, MDA and GSH?Px were measured. Histopathological changes in the liver were determined through hematoxylin and eosin staining. Moreover, TNF‐α, IL‐1β and IL‐6 expression levels were detected by commercial reagent kits. Finally, Western blot analysis was used to check the relative expression levels of caspase‐3, p‐JAK2 and p‐STAT3. The BRP pre‐treatment significantly decreased the enzymatic activities of ALT, ALP and AST in the serum, markedly increased the activities of SOD and GSH?Px in the liver and reduced the MDA concentration in the liver. BRPs alleviated hepatocyte injury and markedly inhibited the expression of TNF‐α, IL‐1β and IL‐6, also downregulating the CCl4‐induced hepatic tissue expression of caspase‐3. Furthermore, BRPs inhibited the JAK2/STAT3 signaling pathway in a dose‐dependent manner in the liver. This study demonstrated that BRPs exert hepatoprotective effect against the CCl4‐induced liver injury via modulating the apoptotic and inflammatory responses and downregulating the JAK2/STAT3 signaling pathway. Therefore, B. rapa could be considered a hepatoprotective medicine.  相似文献   
154.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   
155.
Zhang  Fan  Li  Chunbo  Deng  Kui  Wang  Zhuozhong  Zhao  Weiwei  Yang  Kai  Yang  Chunyan  Rong  Zhiwei  Cao  Lei  Lu  Yaxin  Huang  Yue  Han  Peng  Li  Kang 《Metabolomics : Official journal of the Metabolomic Society》2020,16(3):1-6
Introduction

Untargeted metabolomics intends to objectively analyze a wide variety of compounds. Their diverse physicochemical properties make it difficult to choose an appropriate reconstitution solvent after sample evaporation without influencing the chromatography or hamper column sorbent integrity.

Objectives

The study aimed to identify the most appropriate reconstitution solvent for blood plasma samples in terms of feature recovery, four endogenous compounds, and one selected internal standard.

Methods

We investigated several reconstitution solvent mixtures containing acetonitrile and methanol to resolve human plasma extract and evaluated them concerning the peak areas of tryptophan-d5, glucose, creatinine, palmitic acid, and the phophatidylcholine PC(P-16:0/P-16:0), as well as the total feature count

Results

Results indicated that acetonitrile containing 30% methanol was best suited to match all tested criteria at least for human blood plasma samples.

Conclusion

Despite identifying the mixture of acetonitrile and methanol being suitable as solvent for human blood plasma extracts, we recommend to systematically test for an appropriate reconstitution solvent for each analyzed biomatrix.

  相似文献   
156.
157.
158.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
159.
Although several genome‐wide association studies (GWAS) of non‐syndromic cleft lip with or without cleft palate (NSCL/P) have been reported, more novel association signals are remained to be exploited. Here, we performed an in‐depth analysis of our previously published Chinese GWAS cohort study with replication in an extra dbGaP case‐parent trios and another in‐house Nanjing cohort, and finally identified five novel significant association signals (rs11119445: 3’ of SERTAD4, P = 6.44 × 10−14; rs227227 and rs12561877: intron of SYT14, P = 5.02 × 10−13 and 2.80 × 10−11, respectively; rs643118: intron of TRAF3IP3, P = 4.45 × 10−6; rs2095293: intron of NR6A1, P = 2.98 × 10−5). The mean (standard deviation) of the weighted genetic risk score (wGRS) from these SNPs was 1.83 (0.65) for NSCL/P cases and 1.58 (0.68) for controls, respectively (P = 2.67 × 10−16). Rs643118 was identified as a shared susceptible factor of NSCL/P among Asians and Europeans, while rs227227 may contribute to the risk of NSCL/P as well as NSCPO. In addition, sertad4 knockdown zebrafish models resulted in down‐regulation of sox2 and caused oedema around the heart and mandibular deficiency, compared with control embryos. Taken together, this study has improved our understanding of the genetic susceptibility to NSCL/P and provided further clues to its aetiology in the Chinese population.  相似文献   
160.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号