首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11712篇
  免费   1061篇
  国内免费   1164篇
  13937篇
  2024年   44篇
  2023年   196篇
  2022年   409篇
  2021年   674篇
  2020年   474篇
  2019年   556篇
  2018年   525篇
  2017年   399篇
  2016年   526篇
  2015年   769篇
  2014年   922篇
  2013年   921篇
  2012年   1093篇
  2011年   980篇
  2010年   556篇
  2009年   541篇
  2008年   620篇
  2007年   533篇
  2006年   419篇
  2005年   333篇
  2004年   318篇
  2003年   268篇
  2002年   259篇
  2001年   186篇
  2000年   168篇
  1999年   155篇
  1998年   116篇
  1997年   97篇
  1996年   101篇
  1995年   74篇
  1994年   84篇
  1993年   59篇
  1992年   69篇
  1991年   72篇
  1990年   51篇
  1989年   34篇
  1988年   43篇
  1987年   24篇
  1986年   33篇
  1985年   32篇
  1984年   21篇
  1983年   26篇
  1982年   17篇
  1980年   14篇
  1979年   14篇
  1977年   12篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.  相似文献   
152.
HIV replication can be inhibited by CXCR5+CD8 T cells (follicular cytotoxic T cell [TFC]) which transfer into B-cell follicles where latent HIV infection persists. However, how cytokines affect TFC remain unclear. Understanding which cytokines show the ability to affect TFC could be a key strategy toward curing HIV. Similar mechanisms could be used for the growth and transfer of TFCs and follicular helper T (TFH) cells; as a result, we hypothesized that cytokines IL-6, IL-21, and transforming growth factor-β (TGF-β), which are necessary for the differentiation of TFH cells, could also dictate the development of TFCs. In this work, lymph node mononuclear cells and peripheral blood mononuclear cells from HIV-infected individuals were cocultured with IL-6, IL-21, and TGF-β. We then carried out T-cell receptor (TCR) repertoire analysis to compare the differences between CXCR5 and CXCR5+CD8 T cells. Our results showed that the percentage and function of TFC can be enhanced by stimulation with TGF-β. Besides, TGF-β stimulation enhanced the diversity of TCR and complementarity-determining region 3 sequences. HIV DNA showed a negative correlation with TFC. The use of TGF-β to promote the expression of CXCR5+CD8 T cells could become a new treatment approach for curing HIV.  相似文献   
153.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
154.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   
155.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   
156.
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5′-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.  相似文献   
157.
158.
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.  相似文献   
159.
This study aimed to investigate the protective effect of the M9 region (residues 290–562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia–reperfusion induced by oxygen–glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号