全文获取类型
收费全文 | 11759篇 |
免费 | 1057篇 |
国内免费 | 1164篇 |
专业分类
13980篇 |
出版年
2024年 | 44篇 |
2023年 | 196篇 |
2022年 | 409篇 |
2021年 | 676篇 |
2020年 | 474篇 |
2019年 | 556篇 |
2018年 | 523篇 |
2017年 | 398篇 |
2016年 | 526篇 |
2015年 | 771篇 |
2014年 | 929篇 |
2013年 | 925篇 |
2012年 | 1089篇 |
2011年 | 988篇 |
2010年 | 565篇 |
2009年 | 546篇 |
2008年 | 625篇 |
2007年 | 536篇 |
2006年 | 421篇 |
2005年 | 335篇 |
2004年 | 321篇 |
2003年 | 269篇 |
2002年 | 259篇 |
2001年 | 187篇 |
2000年 | 171篇 |
1999年 | 156篇 |
1998年 | 110篇 |
1997年 | 99篇 |
1996年 | 102篇 |
1995年 | 74篇 |
1994年 | 83篇 |
1993年 | 60篇 |
1992年 | 69篇 |
1991年 | 73篇 |
1990年 | 51篇 |
1989年 | 35篇 |
1988年 | 42篇 |
1987年 | 23篇 |
1986年 | 31篇 |
1985年 | 32篇 |
1984年 | 20篇 |
1983年 | 27篇 |
1982年 | 16篇 |
1980年 | 14篇 |
1979年 | 14篇 |
1977年 | 11篇 |
1975年 | 13篇 |
1974年 | 12篇 |
1973年 | 11篇 |
1970年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Min Yang Yu Zhang Lei Qi Xinyue Mei Jingjing Liao Xupo Ding Weiping Deng Limin Fan Xiahong He Jorge M. Vivanco Chengyun Li Youyong Zhu Shusheng Zhu 《PloS one》2014,9(12)
Background
Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease.Principal Findings
Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici.Conclusions
Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems. 相似文献92.
Lithium‐Sulfur Batteries: Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long‐Life Lithium–Sulfur Batteries (Adv. Energy Mater. 13/2017) 下载免费PDF全文
93.
【目的】红杆菌科(Rhodobacteraceae)细菌为凡纳滨对虾肠道微生物的优势类群,在健康对虾肠道中具有较高的相对丰度,是指示对虾健康的关键类群,探究对虾肠道红杆菌科细菌定向富集和分离方法,可为对虾养殖益生菌菌剂的研发提供基础。【方法】利用16S rRNA基因高通量测序技术研究不同碳源添加对凡纳滨对虾肠道中红杆菌科细菌的富集作用,筛选对红杆菌科细菌有显著富集作用的碳源;利用纯培养技术从红杆菌科细菌富集的样品中定向分离红杆菌科细菌,并对其进行鉴定和遗传多样性分析。【结果】添加短链脂肪酸(乙酸、丙酸、丁酸、戊酸)和碳酸氢钠对红杆菌科细菌有显著富集作用,主要富集到Cribrihabitans、Tritonibacter、Rhodovulum、Ruegeria、Sagittula和Thalassobius属相关菌株;对红杆菌科细菌相对丰度最高的样品进行稀释涂布培养,共分离纯化出303株细菌,分属于2门12科,其中红杆菌科细菌为主导类群共119株,主要包括Tritonibacter (90株)、Phaeobacter (25株)、Sulfitobacter (1株)、Ruegeria (1... 相似文献
94.
Lu Xu Fan Ping Jinhua Yin Xinhua Xiao Hongding Xiang Christie M. Ballantyne Huaizhu Wu Ming Li 《PloS one》2013,8(12)
Objective
Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC), a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM) compared to normal glucose tolerance (NGT) controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women.Design/Methods
Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21), insulin and proinsulin were determined by ELISA.Results
GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT) and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG), Apolipoprotein A1, apolipoprotein B and lipoprotein (a) correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT.Conclusions
SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM. 相似文献95.
Liwen Liang Huili Li Ting Cao Lina Qu Lulu Zhang Guo-Chang Fan Peter A. Greer Jianmin Li Douglas L. Jones Tianqing Peng 《The Journal of biological chemistry》2020,295(49):16840
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities. 相似文献
96.
97.
Lianming Du Qin Liu Kelei Zhao Jie Tang Xiuyue Zhang Bisong Yue Zhenxin Fan 《Molecular ecology resources》2020,20(1):283-291
Microsatellites are widely distributed throughout nearly all genomes which have been extensively exploited as powerful genetic markers for diverse applications due to their high polymorphisms. Their length variations are involved in gene regulation and implicated in numerous genetic diseases even in cancers. Although much effort has been devoted in microsatellite database construction, the existing microsatellite databases still had some drawbacks, such as limited number of species, unfriendly export format, missing marker development, lack of compound microsatellites and absence of gene annotation, which seriously restricted researchers to perform downstream analysis. In order to overcome the above limitations, we developed PSMD (Pan‐Species Microsatellite Database, http://big.cdu.edu.cn/psmd/ ) as a web‐based database to facilitate researchers to easily identify microsatellites, exploit reliable molecular markers and compare microsatellite distribution pattern on genome‐wide scale. In current release, PSMD comprises 678,106,741 perfect microsatellites and 43,848,943 compound microsatellites from 18,408 organisms, which covered almost all species with available genomic data. In addition to interactive browse interface, PSMD also offers a flexible filter function for users to quickly gain desired microsatellites from large data sets. PSMD allows users to export GFF3 formatted file and CSV formatted statistical file for downstream analysis. We also implemented an online tool for analysing occurrence of microsatellites with user‐defined parameters. Furthermore, Primer3 was embedded to help users to design high‐quality primers with customizable settings. To our knowledge, PSMD is the most extensive resource which is likely to be adopted by scientists engaged in biological, medical, environmental and agricultural research. 相似文献
98.
Shengan Zhu Xueyao Feng Nemat O. Keyhani Yu Liu Dan Jin Sheng Tong Yan Pei Yanhua Fan 《Environmental microbiology》2021,23(9):5087-5101
Entomopathogenic fungi such as Metarhizium rileyi and Beauveria bassiana are widely used insect biological control agents. Little, however, is known concerning genetic or enzymatic factors that differentiate the mechanisms employed by these two fungal pathogens to infect target hosts. Infection by either of these organisms is known to increase levels of the growth and molting hormone, ecdysone, which also regulates the expression of a number of innate immune pathways. M. rileyi, but not B. bassiana, has apparently evolved an ecdysteroid-22-oxidase (MrE22O) that inactivate ecdysone. We show that deletion of MrE22O impaired virulence compared with the wild-type strain, with an increase in ecdysone titer seen in hosts that was coupled to an increase in the expression of antimicrobial genes. An M. rileyi strain engineered to overexpress MrE22O (MrE22OOE), as well as trans-expression in B. bassiana (Bb::MrE220OE) resulted, in strains displaying enhanced virulence and dampening of host immune responses compared with their respective wild-type parental strains. These results indicate that ecdysone plays an important role in mediating responses to fungal infection and that some insect pathogenic fungi have evolved mechanisms for targeting this hormone as a means for facilitating infection. 相似文献
99.
Naixiong Peng Zejian Zhang Yaomin Wang Minlong Yang Jiqing Fan Qinjun Wang Ling Deng Dong Chen Yuefeng Cai Qihui Li Xisheng Wang Wei Li 《Journal of cellular and molecular medicine》2021,25(22):10627-10637
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non-coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up-regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR-212-5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR-212-5p was noticeably low in tumour tissues, and FZD5 expression level was down-regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR-212-5p/ FZD5/ Wnt/β-catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients. 相似文献
100.
Qiang Guo Sen Mei Chong Xie Hao Mi Yang Jiang Shi-Ding Zhang Tian-Wei Tan Li-Hai Fan 《Biotechnology and bioengineering》2020,117(6):1738-1746
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications. 相似文献