首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   40篇
  2021年   3篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   11篇
  2015年   5篇
  2014年   12篇
  2013年   14篇
  2012年   18篇
  2011年   16篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   13篇
  2005年   16篇
  2004年   10篇
  2003年   20篇
  2002年   11篇
  2001年   15篇
  2000年   12篇
  1999年   16篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   17篇
  1990年   8篇
  1989年   14篇
  1988年   8篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1982年   6篇
  1981年   6篇
  1979年   9篇
  1978年   3篇
  1977年   9篇
  1976年   3篇
  1975年   8篇
  1974年   6篇
  1973年   5篇
  1970年   3篇
  1968年   2篇
  1965年   2篇
  1935年   2篇
排序方式: 共有439条查询结果,搜索用时 31 毫秒
121.
122.
It has been shown that the presence of certain helminth infections in humans, including schistosomes, may reduce the propensity to develop allergies in infected populations. Using a mouse model of schistosome worm vs worm + egg infection, our objective was to dissect the mechanisms underlying the inverse relationship between helminth infections and allergies. We have demonstrated that conventional Schistosoma mansoni egg-laying male and female worm infection of mice exacerbates airway hyperresponsiveness. In contrast, mice infected with only schistosome male worms, precluding egg production, were protected from OVA-induced airway hyperresponsiveness. Worm-infected mice developed a novel modified type 2 cytokine response in the lungs, with elevated allergen-specific IL-4 and IL-13 but reduced IL-5, and increased IL-10. Although schistosome worm-only infection is a laboratory model, these data illustrate the complexity of schistosome modulation of host immunity by the worm vs egg stages of this helminth, with the potential of infections to aggravate or suppress allergic pulmonary inflammation. Thus, infection of mice with a human parasitic worm can result in reduced airway inflammation in response to a model allergen.  相似文献   
123.
This case report discusses a patient with co-occurring neuroborreliosis and Alzheimer’s disease (AD). Although no claim is made for causality nor is there objective evidence that spirochetes are involved in AD, co-infection may exacerbate the symptoms of either neuroborreliosis or AD. Much is to be learned about the role of spirochetes in degenerative central nervous system disease.  相似文献   
124.
Calmodulin binds to IQ motifs in the α1 subunit of CaV1.1 and CaV1.2, but the affinities of calmodulin for the motif and for Ca2+ are higher when bound to CaV1.2 IQ. The CaV1.1 IQ and CaV1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to CaV1.1 IQ and compared it with that of calmodulin bound to CaV1.2 IQ. Four methionines in Ca2+-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of CaV1.1 and Tyr-1675 of CaV1.2) contacts this calmodulin pocket. However, Tyr-1675 in CaV1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in CaV1.2 contribute significantly to the difference in the Ca2+ affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca2+-bound and one lobe Ca2+-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to CaV1.2.The complexity of eukaryotic Ca2+ signaling arises from the ability of cells to respond differently to Ca2+ signals that vary in amplitude, duration, and location. A variety of mechanisms decode these signals to drive the appropriate physiological responses. The Ca2+ sensor for many of these physiological responses is the Ca2+-binding protein calmodulin (CaM).2 The primary sequence of CaM is tightly conserved in all eukaryotes, yet it binds and regulates a broad set of target proteins in response to Ca2+ binding. CaM has two domains that bind Ca2+ as follows: an amino-terminal domain (N-lobe) and a carboxyl-terminal domain (C-lobe) joined via a flexible α-helix. Each lobe of CaM binds two Ca2+ ions, and binding within each lobe is highly cooperative. The two lobes of CaM, however, have distinct Ca2+ binding properties; the C-lobe has higher Ca2+ affinity because of a slower rate of dissociation, whereas the N-lobe has weaker Ca2+ affinity and faster kinetics (1). CaM can also bind to some target proteins in both the presence and absence of Ca2+, and the preassociation of CaM in low Ca2+ modulates the apparent Ca2+ affinity of both the amino-terminal and carboxyl-terminal lobes. Differences in the Ca2+ binding properties of the lobes and in the interaction sites of the amino- and carboxyl-terminal lobes enable CaM to decode local versus global Ca2+ signals (2).Even though CaM is highly conserved, CaM target (or recognition) sites are quite heterogeneous. The ability of CaM to bind to very different targets is at least partially due to its flexibility, which allows it to assume different conformations when bound to different targets. CaM also binds to various targets in distinct Ca2+ saturation states as follows: Ca2+-free (3), Ca2+ bound to only one of the two lobes, or fully Ca2+-bound (47). In addition, CaM may bind with both lobes bound to a target (5, 6) or with only a single lobe engaged (8). If a target site can bind multiple conformers of CaM, CaM may undergo several transitions that depend on Ca2+ concentration, thereby tuning the functional response. Identification of stable intermediate states of CaM bound to individual targets will help to elucidate the steps involved in this fine-tuned control.Both CaV1.1 and CaV1.2 belong to the L-type family of voltage-dependent Ca2+ channels, which bind apoCaM and Ca2+-CaM at carboxyl-terminal recognition sites in their α1 subunits (914). Ca2+ binding to CaM, bound to CaV1.2 produces Ca2+-dependent facilitation (CDF) (14). Whether CaV1.1 undergoes CDF is not known. However, both CaV1.2 and CaV1.1 undergo Ca2+- and CaM-dependent inactivation (CDI) (14, 15). CaV1.1 CDI is slower and more sensitive to buffering by 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid than CaV1.2 CDI (15). Ca2+ buffers are thought to influence CDI and/or CDF in voltage-dependent Ca2+ channels by competing with CaM for Ca2+ (16).The conformation of the carboxyl terminus of the α1 subunit is critical for channel function and has been proposed to regulate the gating machinery of the channel (17, 18). Several interactions of this region include intramolecular contacts with the pore inactivation machinery and intermolecular contacts with CaM kinase II and ryanodine receptors (17, 1922). Ca2+ regulation of CaV1.2 may involve several motifs within this highly conserved region, including an EF hand motif and three contiguous CaM-binding sequences (10, 12). ApoCaM and Ca2+-CaM-binding sites appear to overlap at the site designated as the “IQ motif” (9, 12, 13), which are critical for channel function at the molecular and cellular level (14, 23).Differences in the rate at which 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca2+ binding to CaM. We find the structures of Ca2+-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca2+-saturated form of CaM.  相似文献   
125.
Mutations in the parkin gene are responsible for a common familial form of Parkinson's disease. As parkin encodes an E3 ubiquitin ligase, defects in proteasome-mediated protein degradation are believed to have a central role in the pathogenesis of Parkinson's disease. Here, we report a novel role for parkin in a proteasome-independent ubiquitination pathway. We have identified a regulated interaction between parkin and Eps15, an adaptor protein that is involved in epidermal growth factor (EGF) receptor (EGFR) endocytosis and trafficking. Treatment of cells with EGF stimulates parkin binding to both Eps15 and the EGFR and promotes parkin-mediated ubiquitination of Eps15. Binding of the parkin ubiquitin-like (Ubl) domain to the Eps15 ubiquitin-interacting motifs (UIMs) is required for parkin-mediated Eps15 ubiquitination. Furthermore, EGFR endocytosis and degradation are accelerated in parkin-deficient cells, and EGFR signalling via the phosphoinositide 3-kinase (PI(3)K)-Akt pathway is reduced in parkin knockout mouse brain. We propose that by ubiquitinating Eps15, parkin interferes with the ability of the Eps15 UIMs to bind ubiquitinated EGFR, thereby delaying EGFR internalization and degradation, and promoting PI(3)K-Akt signalling. Considering the role of Akt in neuronal survival, our results have broad new implications for understanding the pathogenesis of Parkinson's disease.  相似文献   
126.
127.
The preparation of a series of novel Pt(IV) complexes containing the anionic polyfluoroaryl ligands, 2,3,5,6-tetrafluorophenyl (p-HC6F4), 2,3,5,6-tetrafluoro-4-methoxyphenyl (p-MeOC6F4) and pentafluorophenyl (C6F5) are described. The crystal structure of a representative complex, [Pt(p-MeOC6F4)2(O2CEt)2(en)] (en = ethane-1,2-diamine) was determined and confirms the trans arrangement of the carboxylato ligands. Reduction potentials of the series of complexes reveal that replacement of equatorial chloro ligands by polyfluoroaryl ligands makes reduction substantially more difficult. They also confirm previously reported trends in that complexes having axial carboxylato ligands are more readily reduced than those having axial hydroxo ligands. Reduction potentials and in vitro activities showed no obvious correlations. Moderate to high activity was observed for many complexes in the series, including some of those that were very difficult to reduce.  相似文献   
128.
Beckwith-Wiedemann syndrome (BWS), which causes prenatal overgrowth, midline abdominal wall defects, macroglossia, and embryonal tumors, is a model for understanding the relationship between genomic imprinting, human development, and cancer. The causes are heterogeneous, involving multiple genes on 11p15 and including infrequent mutation of p57(KIP2) or loss of imprinting of either of two imprinted gene domains on 11p15: LIT1, which is near p57(KIP2), or H19/IGF2. Unlike Prader-Willi and Angelman syndromes, no chromosomal deletions have yet been identified. Here we report a microdeletion including the entire LIT1 gene, providing genetic confirmation of the importance of this gene region in BWS. When inherited maternally, the deletion causes BWS with silencing of p57(KIP2), indicating deletion of an element important for the regulation of p57(KIP2) expression. When inherited paternally, there is no phenotype, suggesting that the LIT1 RNA itself is not necessary for normal development in humans.  相似文献   
129.
An in vitro preparation of the guinea-pig cornea was used to study the effects of changing temperature on nerve terminal impulses recorded extracellularly from cold-sensitive receptors. At a stable holding temperature (31-32.5 degrees C), cold receptors had an ongoing periodic discharge of nerve terminal impulses. This activity decreased or ceased with heating and increased with cooling. Reducing the rate of temperature change reduced the respective effects of heating and cooling on nerve terminal impulse frequency. In addition to changes in the frequency of activity, nerve terminal impulse shape also changed with heating and cooling. At the same ambient temperature, nerve terminal impulses were larger in amplitude and faster in time course during heating than those recorded during cooling. The magnitude of these effects of heating and cooling on nerve terminal impulse shape was reduced if the rate of temperature change was slowed. At 29, 31.5, and 35 degrees C, a train of 50 electrical stimuli delivered to the ciliary nerves at 10-40 Hz produced a progressive increase in the amplitude of successive nerve terminal impulses evoked during the train. Therefore, it is unlikely that the reduction in nerve terminal impulse amplitude observed during cooling is due to the activity-dependent changes in the nerve terminal produced by the concomitant increase in impulse frequency. Instead, the differences in nerve terminal impulse shape observed at the same ambient temperature during heating and cooling may reflect changes in the membrane potential of the nerve terminal associated with thermal transduction.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号