首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   136篇
  国内免费   1篇
  1384篇
  2022年   12篇
  2021年   26篇
  2020年   9篇
  2019年   11篇
  2018年   18篇
  2017年   13篇
  2016年   26篇
  2015年   41篇
  2014年   60篇
  2013年   62篇
  2012年   65篇
  2011年   65篇
  2010年   56篇
  2009年   36篇
  2008年   50篇
  2007年   62篇
  2006年   44篇
  2005年   38篇
  2004年   52篇
  2003年   39篇
  2002年   31篇
  2001年   27篇
  2000年   30篇
  1999年   23篇
  1998年   16篇
  1997年   13篇
  1996年   12篇
  1995年   16篇
  1994年   18篇
  1993年   13篇
  1992年   19篇
  1991年   27篇
  1990年   23篇
  1989年   16篇
  1988年   17篇
  1987年   9篇
  1985年   19篇
  1984年   14篇
  1983年   20篇
  1982年   16篇
  1980年   11篇
  1979年   17篇
  1976年   10篇
  1974年   18篇
  1973年   10篇
  1971年   8篇
  1970年   12篇
  1969年   10篇
  1968年   9篇
  1967年   8篇
排序方式: 共有1384条查询结果,搜索用时 15 毫秒
141.
Under conditions of iron-stress, the Photosystem II associated chlorophyll a protein complex designated CP 43, which is encoded by the isiA gene, becomes the major pigment-protein complex in Synechococcus sp. PCC 7942. The isiB gene, which is located immediately downstream of isiA, encodes the protein flavodoxin, which can functionally replace ferredoxin under conditions of iron stress. We have constructed two cyanobacterial insertion mutants which are lacking (i) the CP 43 apoprotein (designated isiA ) and (ii) flavodoxin (designated isiB ). The function of CP 43 was studied by comparing the cell characteristics, PS II functional absorption cross-sections and Chl a fluorescence parameters from the wild-type, isiA and isiB strains grown under iron-stressed conditions. In all strains grown under iron deprivation, the cell number doubling time was maintained despite marked changes in pigment composition and other cell characteristics. This indicates that iron-starved cells remained viable and that their altered phenotype suggests an adequate acclimation to low iron even in absence of CP 43 and/or flavodoxin. Under both iron conditions, no differences were detected between the three strains in the functional absorption crossection of PS II determined from single turnover flash saturation curves of Chl a fluorescence. This demonstrates that CP 43 is not part of the functional light-harvesting antenna for PS II. In the wild-type and the isiB strain grown under iron-deficient conditions, CP 43 was present in the thylakoid membrane as an uncoupled Chl-protein complex. This was indicated by (1) an increase of the yield of prompt Chl a fluorescence (Fo) and (2) the persistence after PS II trap closure of a fast fluorescence decay component showing a maximum at 685 nm.Abbreviations Chl chlorophyll - CP 43, CP 47 and CP 43 Chl a binding protein complexes of indicated molecular mass - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm and Fm fluorescence when all PS II reaction centers are dosed in dark- and light-acclimated cells, respectively - Fo fluorescence when all PS II reaction centers are open in dark acclimated cells - Fv variable fluorescence after dark acclimation (Fm–Fo)  相似文献   
142.
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions.  相似文献   
143.
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean – a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean.  相似文献   
144.
The land‐atmosphere exchange of methane (CH4) and carbon dioxide (CO2) in a high‐Arctic wet tundra ecosystem (Rylekærene) in Zackenberg, north‐eastern Greenland, was studied over the full growing season and until early winter in 2008 and from before snow melt until early winter in 2009. The eddy covariance technique was used to estimate CO2 fluxes and a combination of the gradient and eddy covariance methods was used to estimate CH4 fluxes. Small CH4 bursts were observed during spring thawing 2009, but these existed during short periods and would not have any significant effect on the annual budget. Growing season CH4 fluxes were well correlated with soil temperature, gross primary production, and active layer thickness. The CH4 fluxes remained low during the entire autumn, and until early winter. No increase in CH4 fluxes were seen as the soil started to freeze. However, in autumn 2008 there were two CH4 burst events that were highly correlated with atmospheric turbulence. They were likely associated with the release of stored CH4 from soil and vegetation cavities. Over the measurement period, 7.6 and 6.5 g C m?2 was emitted as CH4 in 2008 and in 2009, respectively. Rylekærene acted as a C source during the warmer and wetter measurement period 2008, whereas it was a C sink for the colder and drier period of 2009. Wet tundra ecosystems, such as Rylekærene may thus play a more significant role for the climate in the future, as temperature and precipitation are predicted to increase in the high‐Arctic.  相似文献   
145.
Understanding what environmental drivers influence marine predator–prey relationships can be key to managing and protecting ecosystems, especially in the face of future climate change risks. This is especially important in environments such as the Black Sea, where strong biogeochemical gradients can drive marine habitat partitioning and ecological interactions. We used underwater video recordings in the north-eastern Black Sea in November 2013 to observe the distribution and behaviour of the Black Sea sprat (Sprattus sprattus phalericus, Risso 1827) and its zooplankton prey. Video recordings have shown that the Black Sea sprat S. sprattus phalericus tolerates severely hypoxic waters near the redoxcline. The school was distributed in the 33–96 m layer [oxygen concentration (O2) 277–84 μmol L−1]. Some individuals were observed to leave the school and descended 20 m deeper for foraging on copepods in the 119–123 m layer (O2 12–10 μmol L−1). Zooplankton appeared concentrated on the upper boundary of the suboxic zone (O2 < 10 μmol L−1). No zooplankton were observed below O2 6–7 μmol L−1 (128 m). Understanding the ability of this species to tolerate low oxygen waters is crucial to predicting future responses to natural and anthropogenic changes in hypoxia.  相似文献   
146.
The in vitro export of ribosomal ribonucleoprotein (rRNP) from Tetrahymena nuclei was investigated at the optimal growth temperature of 28 degrees C and at the nonlethal temperature of 8 degrees C. At both temperatures, nuclei exported ribosomal precursor particles that revealed the same physical qualities of size, appearance in negative-staining electron microscopy, sedimentation coefficient, buoyant density, and rRNA pattern. Surprisingly, fewer rRNP particles were exported at 8 than at 28 degrees C, as was revealed by a lower saturation plateau in the export kinetics from nuclei prelabeled with [3H]uridine. Upon a temperature increase from 8 to 28 degrees C, additional rRNP particles were exported. We conclude that nuclei export only a defined portion of rRNP particles at a given temperature, although enough potentially transportable rRNP particles are present in nuclei. Obviously, the reactivity of at least one of the reactants involved directly or indirectly in rRNP export changes with temperature.  相似文献   
147.
The relationship between the size of the light harvesting antenna to photosystem II (LHCII) and quenching of non-photochemical and dark level fluorescence was studied in wild-type rye (Secale cereale L. cv. Musketeer) and barley (Hordeum vulgare L. cv. Gunilla) as well as in the barley chlorophyll b-less chlorina F2 mutant (H. vulgare L. cv. Dornaria, chlorina-F2). Exposure for 10 min to an irradiance of 500 μmol m?2 s?1 resulted in a strong (0.71–0.73) non-photochemical (qs) quenching of the fluorescence yield in wild-type (WT) material, while the barley chlorina F2-mutant was quenched to 75% of this level. Relaxation of qs in darkness revealed a fast initial decay, related to relaxation of the high-energy-state dependent (qE) part of qs. Etiolated seedlings of rye and barley exposed to intermittent light (IML) for 36 cycles of 2 min light and 118 min darkness had suppressed Chl b and LHCII-production in both WT rye and barley, while the barley chlorina F2-mutant became totally devoid of all LHCII-polypeptides. It was found that the levels of qs and qs were similar in control grown barley chlorina F2 and IML-grown WT rye and barley, but qs was reduced by 30 to 35% and qs by 50 to 65%, respectively, as compared to control-grown. WT plants. No significant qs could be detected in IML-grown barley chlorina F2. It is clear, from these changes in in vivo fluorescence quenching in rye and barley that a significant level of qs is detectable even in the absence of LHCII. Only when the proximal antennae are totally absent, does qE completely disappear. We conclude that the presence of LHCII is not an absolute requirement for qE-quenching and suggest that distal as well as proximal antenna may contribute to qE in vivo.  相似文献   
148.
The receptor for advanced glycation end products (RAGE) is a 55-kDa type I membrane glycoprotein of the immunoglobulin superfamily. Ligand-induced up-regulation of RAGE is involved in various pathophysiological processes, including late diabetic complications and Alzheimer disease. Application of recombinant soluble RAGE has been shown to block RAGE-mediated pathophysiological conditions. After expression of full-length RAGE in HEK cells we identified a 48-kDa soluble RAGE form (sRAGE) in the culture medium. This variant of RAGE is smaller than a 51-kDa soluble version derived from alternative splicing. The release of sRAGE can be induced by the phorbol ester PMA and the calcium ionophore calcimycin via calcium-dependent protein kinase C subtypes. Hydroxamic acid-based metalloproteinase inhibitors block the release of sRAGE, and by RNA interference experiments we identified ADAM10 and MMP9 to be involved in RAGE shedding. In protein biotinylation experiments we show that membrane-anchored full-length RAGE is the precursor of sRAGE and that sRAGE is efficiently released from the cell surface. We identified cleavage of RAGE to occur close to the cell membrane. Ectodomain shedding of RAGE simultaneously generates sRAGE and a membrane-anchored C-terminal RAGE fragment (RAGE-CTF). The amount of RAGE-CTF increases when RAGE-expressing cells are treated with a gamma-secretase inhibitor, suggesting that RAGE-CTF is normally further processed by gamma-secretase. Identification of these novel mechanisms involved in regulating the availability of cell surface-located RAGE and its soluble ectodomain may influence further research in RAGE-mediated processes in cell biology and pathophysiology.  相似文献   
149.
Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet‐uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high‐quality metagenome‐assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin‐ and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage‐based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to ‘social’ interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring ‘interactomes’ and to overcome our inability to isolate and grow the microbes dominating in nature.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号