首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   161篇
  国内免费   1篇
  1582篇
  2022年   11篇
  2021年   28篇
  2020年   12篇
  2019年   12篇
  2018年   22篇
  2017年   19篇
  2016年   34篇
  2015年   45篇
  2014年   64篇
  2013年   74篇
  2012年   75篇
  2011年   75篇
  2010年   70篇
  2009年   45篇
  2008年   58篇
  2007年   61篇
  2006年   52篇
  2005年   49篇
  2004年   61篇
  2003年   47篇
  2002年   34篇
  2001年   34篇
  2000年   30篇
  1999年   29篇
  1998年   19篇
  1997年   17篇
  1996年   16篇
  1995年   15篇
  1994年   22篇
  1993年   13篇
  1992年   23篇
  1991年   37篇
  1990年   27篇
  1989年   19篇
  1988年   19篇
  1987年   13篇
  1985年   20篇
  1984年   19篇
  1983年   21篇
  1982年   15篇
  1981年   10篇
  1980年   11篇
  1979年   18篇
  1976年   10篇
  1974年   18篇
  1973年   11篇
  1970年   11篇
  1969年   11篇
  1968年   9篇
  1967年   10篇
排序方式: 共有1582条查询结果,搜索用时 15 毫秒
41.
Gregersen H  Zhao J  Lu X  Zhou J  Falk E 《Biorheology》2007,44(2):75-89
Atherosclerosis is the most frequent cause of death and severe chronic disability in North America and Europe. The atherosclerosis-prone apolipoprotein E (apoE)-deficient mice contain the entire spectrum of lesions observed during atherogenesis. Significant remodelling of the artery occurs in atherosclerosis. The aim was to study the remodelling of the zero-stress state of the aorta in apoE-deficient mice up to 56 weeks of age. Normal wild-type mice served as control groups. The mice were euthanised at ages 10, 28 and 56 weeks and tissue rings where excised from several locations along the aorta. The rings where photographed in the no-load state (without any external forces applied), then cut radially to obtain the zero-stress state and photographed again. The cross-sectional wall area and wall thickness increased over time in apoE-deficient mice compared to controls (P<0.001). The residual strains at the inner and outer surface varied as function of aortic location both in controls and apoE-deficient mice (P<0.001). From age 28 to age 56 weeks a gradual increase in positive strain at the outer surface and negative strain at the inner surface was found in the apoE-deficient mice when compared to age-matched control mice (P<0.001). Furthermore, the inner residual strain in the plaque location was significantly smaller than in the non-plaque location in the rings with atherosclerotic plaques (P<0.001). The change over time of the opening angle was especially pronounced in the aortic arch. The opening angle increased to app. 200 degrees in the aortic arch in apoE-deficient mice at 56 weeks of age whereas it in age-matched controls was app. 125 degrees. Correspondingly, atherosclerotic plaques were prominent in the apoE-deficient mice, especially at week 56 in the ascending aorta and the aortic arch. In conclusion, a pronounced remodelling of the biomechanical properties in aorta was found in apoE-deficient mice. The stress gradient across the vessel wall in the plaque region is likely larger in vivo due to the smaller residual strain in the plaque area.  相似文献   
42.
Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.  相似文献   
43.
Mendel's work in hybridization is ipso facto a study in inheritance. He is explicit in his interest to formulate universal generalizations, and at least in the case of the independent segregation of traits, he formulated his conclusions in the form of a law. Mendel did not discern, however, the inheritance of traits from that of the potential for traits. Choosing to study discrete non-overlapping traits, this did not hamper his efforts.  相似文献   
44.
Mutant Arabidopsis thaliana taeniata (tae) plants are characterized by an altered morphology of leaves and the inflorescence. At the beginning of flowering, the inflorescence produces fertile flowers morphologically intermediate between a shoot and a flower. The recessive mutation tae also causes the formation of ectopic meristems and shoot rosettes on leaves. The expressivity of the mutant characters depend on the temperature and photoperiod. Analysis of the activity of KNOX class I genes in the leaves of the tae mutant has demonstrated the expression of genes KNAT2 and STM and an increase in the expression of genes KNAT1 and KNAT6 compared to wild-type leaves. These data indicate that the TAE gene negatively regulates the KNAT1, KNAT2, KNAT6, and STM genes.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1068–1074.Original Russian Text Copyright © 2005 by Lebedeva, Ezhova, Melzer.  相似文献   
45.
The Cyclotherm instrument is a functionally fully equivalent but inexpensive alternative to commercial instruments for automated polymerase chain reaction (PCR). It can be rebuilt under conditions of a biochemical laboratory for less than +1000. A Peltier element is used for heating and cooling of the reaction vials and the temperature and timing of the PCR cycles are controlled by a BASIC program in a SHARP PC 1600 low cost computer.  相似文献   
46.
Chimeric gene fusions between 4.4 kb of rod opsin 5' flanking sequence fused to a diphtheria toxin gene and 4.4 kb or 500 bp of rod opsin 5' flanking sequence fused to the E. coli IacZ gene were used to generate transgenic mice for analysis of cell type-specific expression and temporal and spatial distribution of reporter gene product during retinal development. Opsin-diphtheria toxin transgene expression evoked photoreceptor-specific cell death. The 4.4 kb opsin-IacZ transgene followed temporal and spatial gradients of expression that approximate opsin expression. The 500 bp opsin fragment targeted expression to photoreceptors, but expression was weaker and nonuniform, suggesting that elements located upstream may be required for enhanced and uniform spatial expression.  相似文献   
47.
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.Motoneurons are extremely extended neurons that mediate the control of all muscle types by the central nervous system. Therefore, diseases involving progressive motoneuron degeneration such as amyotrophic lateral sclerosis (ALS)1 (OMIM: 105400) or spinal muscle atrophy (OMIM: 253300) are particularly devastating and generally fatal disorders. Today, ALS is believed to form a phenotypic continuum with the disease entity frontotemporal lobe degeneration (OMIM: 600274) (1, 2). About 10% of ALS cases are known to be inherited, but the vast majority are considered sporadic. The number of inherited cases might be underestimated because of incomplete family histories, non-paternity, early death of family members, or incomplete penetrance (3).Mutations in several genes have been reported for the familial form, including in Sod1 (4), Als2 (5), Setx (6), Vapb (7), Tardbp (8, 9), Fus/Tls (10, 11), Vcp (12), Pfn1 (13), and several others (reviewed in Ref. 14). The most frequent genetic cause of inherited ALS was recently shown to be a hexanucleotide repeat expansion in an intron of a gene of unknown function called C9orf72 (1517). Based on the spectrum of known mutations, several disease mechanisms for ALS have been proposed, including dysfunction of protein folding, axonal transport, RNA splicing, and metabolism (reviewed in Refs. 14, 18, and 19). Despite intensive research, it is still unclear whether a main common molecular pathway or mechanism underlies motoneuron degeneration in ALS and frontotemporal lobe degeneration. Spinal muscle atrophy is caused by homozygous mutations or deletions in the survival of motor neuron gene (Smn1) that presumably impair the RNA metabolism through diminished functionality of the Smn1 gene product (20). Over recent decades several model systems have been established to investigate ALS (21). These include transgenic animal models such as mouse (22), drosophila (23), and zebrafish (24). In cell-based studies, primary motoneurons cultured from rodent embryos (25) or motoneuron-like cell lines are employed. Primary cells are considered to more closely mimic the in vivo situation, but they are more challenging to establish and maintain. In contrast, the degree of functional relevance of cell lines can be difficult to establish, but they can be propagated without limitation and are well suited for high-throughput analysis. In particular, the spinal cord neuron–neuroblastoma hybrid cell line NSC-34 (26) and the mouse neuroblastoma cell line N2a (27) are widely used not only to assess motoneuron function, but also to study disease mechanisms in motoneurons (28, 29).As proteins are the functional actors in cells, proteomics should be able to make important contributions to the characterization and evaluation of cellular models. In particular, by identifying and quantifying the expressed proteins and bioinformatically interpreting the results, one can obtain enough information to infer functional differences. Our laboratory has previously shown proof of concept of such an approach by comparing the expression levels of about 4,000 proteins between primary hepatocytes and a hepatoma cell line (30). Very recently, mass-spectrometry-based proteomics has achieved sufficient depth and accuracy to quantify almost the entire proteome of mammalian cell lines (3133). Furthermore, new instrumentation and algorithms now make it possible to perform label-free quantification between multiple cellular systems and with an accuracy previously associated only with stable isotope labeling techniques (34, 35).To evaluate the suitability of motoneuron-like cell lines as cellular model systems for research on ALS and related disorders, we characterized the proteomes of two widely used cell lines, NSC-34 and N2a, and compared them with the proteomes of mouse primary motoneurons and non-neuronal control cell lines. To generate primary motoneurons, we employed a recently described culturing system that makes it possible to isolate highly enriched motoneuron populations in less than 8 h (25). We identified more than 10,000 proteins and investigated differences in quantitative levels of individual neuron-associated proteins and pathways related to motoneuron function and disease mechanisms.  相似文献   
48.
We have investigated the initial steps in the interaction between infectious salmon anemia virus (ISAV) and cultured cells from Atlantic salmon (SHK-1 cell line). Using radioactively or fluorescently labelled viral particles we have studied the binding and fusion kinetics and the effect of pH on binding, uptake, and fusion of ISAV to SHK-1 cells and liposomes. As pH in the medium was reduced from 7.5 to 4.5, the association of virus to the cells was nearly doubled. The same effect of pH was observed when fusion between ISAV and liposomes was analyzed. In addition, the binding of ISAV to intact SHK-1 cells and to cell membrane proteins blotted onto filters was neuraminidase sensitive. However, the increased binding induced by low pH was not neuraminidase sensitive, probably reflecting activation of a fusion peptide at low pH. By using confocal fluorescence microscopy, the increased fusion of fluorescently labelled ISAV with the plasma membrane due to low pH could be demonstrated. When vacuolar pH in the cells was raised during inoculation with chloroquine or ammonium chloride, both electron and confocal microscopy showed accumulation of ISAV in endosomes and lysosomes. Production of infectious virus could be increased by lowering the extracellular pH during infection. Furthermore, chloroquine present during virus inoculation also caused a reduction in the synthesis of viral proteins in ISAV-infected cells as well as in the production of infective virus. These results indicate that ISAV binds to sialic acid residues on the cell surface and that the fusion between virus and cell membrane takes place in the acid environment of endosomes. This provides further evidence for a high degree of similarity between ISAV and influenza virus and extends the basis for the classification of this virus as a member of the Orthomyxoviridae family.  相似文献   
49.
Indices of rostrality (ir, ir') are developed to assess the extent to which the medial end of the lunate sulcus (L) is rostrally positioned in photographs and figures of lateral views of primate brains and endocasts, and indices are determined for chimpanzees, SK 1585 and the Taung endocast. Ir quantifies the extent of rostrality as it has traditionally been viewed (in A-P projections) while ir' takes dorsal curvature into account. The ir of the feature that I have identified as the lunate sulcus of Taung is within one standard deviation of the mean ir for Pan and its ir' is within 1.5 standard deviations from the mean ir' for Pan. Both findings are compatible with my earlier statement that the medial end of the lunate sulcus of the Taung endocast is in a pongid-like position. Use of stereoplotting to transfer the position of L from chimpanzee endocasts and brains to australopithecine endocasts is critically assessed: Holloway stereoplotted five chimpanzee brains and then transferred their mean coordinates that describe the lunate sulcus to the Taung endocast. If stereoplotting successfully transfers the extent to which L is rostrally located, one would expect the mean L of Pan and its transferred counterpart in Taung to have identical index values of rostrality. However, the ir of the lunate sulcus that Holloway located on Taung is over two standard deviations lower than the mean ir for the five chimpanzees he stereoplotted to determine its angular coordinates, and Holloway's ir' for Taung is one standard deviation lower than the five chimpanzees' mean ir'. These discrepancies are shown to be due to shape differences, and it is concluded that stereoplotting should not be used to transfer sulci between differently shaped endocasts without correcting for these differences. I also reply to Holloway's criticisms of my use of L/H indices, palpation, techniques for sampling endocasts, and illustration of the Taung endocast. It is shown that there is room on the Taung specimen for the lateral end of L, and the pongid-like sulcal pattern of Taung is reaffirmed. Thus, we do not yet know when human-like sulcal patterns first appeared in the hominid fossil record.  相似文献   
50.
Caspases are key enzymes responsible for mediating apoptotic cell death. Across species, caspase‐2 is the most conserved caspase and stands out due to unique features. Apart from cell death, caspase‐2 also regulates autophagy, genomic stability and ageing. Caspase‐2 requires dimerization for its activation which is primarily accomplished by recruitment to high molecular weight protein complexes in cells. Here, we demonstrate that apoptosis inhibitor 5 (API5/AAC11) is an endogenous and direct inhibitor of caspase‐2. API5 protein directly binds to the caspase recruitment domain (CARD) of caspase‐2 and impedes dimerization and activation of caspase‐2. Interestingly, recombinant API5 directly inhibits full length but not processed caspase‐2. Depletion of endogenous API5 leads to an increase in caspase‐2 dimerization and activation. Consistently, loss of API5 sensitizes cells to caspase‐2‐dependent apoptotic cell death. These results establish API5/AAC‐11 as a direct inhibitor of caspase‐2 and shed further light onto mechanisms driving the activation of this poorly understood caspase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号