首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1205篇
  免费   130篇
  国内免费   1篇
  2022年   11篇
  2021年   24篇
  2020年   9篇
  2019年   10篇
  2018年   17篇
  2017年   11篇
  2016年   23篇
  2015年   39篇
  2014年   57篇
  2013年   64篇
  2012年   63篇
  2011年   57篇
  2010年   57篇
  2009年   37篇
  2008年   49篇
  2007年   53篇
  2006年   46篇
  2005年   38篇
  2004年   54篇
  2003年   39篇
  2002年   33篇
  2001年   24篇
  2000年   25篇
  1999年   22篇
  1998年   15篇
  1997年   12篇
  1996年   9篇
  1995年   13篇
  1994年   17篇
  1993年   13篇
  1992年   18篇
  1991年   27篇
  1990年   23篇
  1989年   17篇
  1988年   18篇
  1987年   9篇
  1985年   19篇
  1984年   14篇
  1983年   20篇
  1982年   15篇
  1980年   11篇
  1979年   17篇
  1976年   10篇
  1974年   18篇
  1973年   10篇
  1971年   8篇
  1970年   12篇
  1969年   10篇
  1968年   9篇
  1967年   8篇
排序方式: 共有1336条查询结果,搜索用时 31 毫秒
971.
972.
MingCheng Luo  Kavitha Madishetty  Jan T. Svensson  Matthew J. Moscou  Steve Wanamaker  Tao Jiang  Andris Kleinhofs  Gary J. Muehlbauer  Roger P. Wise  Nils Stein  Yaqin Ma  Edmundo Rodriguez  Dave Kudrna  Prasanna R. Bhat  Shiaoman Chao  Pascal Condamine  Shane Heinen  Josh Resnik  Rod Wing  Heather N. Witt  Matthew Alpert  Marco Beccuti  Serdar Bozdag  Francesca Cordero  Hamid Mirebrahim  Rachid Ounit  Yonghui Wu  Frank You  Jie Zheng  Hana Simková  Jaroslav Dolezel  Jane Grimwood  Jeremy Schmutz  Denisa Duma  Lothar Altschmied  Tom Blake  Phil Bregitzer  Laurel Cooper  Muharrem Dilbirligi  Anders Falk  Leila Feiz  Andreas Graner  Perry Gustafson  Patrick M. Hayes  Peggy Lemaux  Jafar Mammadov  Timothy J. Close 《The Plant journal : for cell and molecular biology》2015,84(1):216-227
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.  相似文献   
973.
Beyond its well-documented role in vesicle endocytosis, clathrin has also been implicated in the internalization of large particles such as viruses, pathogenic bacteria, and even latex beads. We have discovered an additional clathrin-dependent endocytic process that results in the internalization of large, double-membrane vesicles at lateral membranes of cells that are coupled by gap junctions (GJs). GJ channels bridge apposing cell membranes to mediate the direct transfer of electrical currents and signaling molecules from cell to cell. Here, we report that entire GJ plaques, clusters of GJ channels, can be internalized to form large, double-membrane vesicles previously termed annular gap junctions (AGJs). These internalized AGJ vesicles subdivide into smaller vesicles that are degraded by endo/lysosomal pathways. Mechanistic analyses revealed that clathrin-dependent endocytosis machinery-components, including clathrin itself, the alternative clathrin-adaptor Dab2, dynamin, myosin-VI, and actin are involved in the internalization, inward movement, and degradation of these large, intercellular double-membrane vesicles. These findings contribute to the understanding of clathrin's numerous emerging functions.  相似文献   
974.
The leukocyte CD44 and CD45 cell surface receptors are associated via the linker proteins ankyrin and fodrin with the cytoskeleton, which itself is important in immune cell functions such as adherence, chemotaxis, and phagocytosis. The effects of rat antihuman CD44 and CD45 monoclonal antibodies on phagocytosis of fluoresceinated heat-killed Staphylococcus aureus 502A by normal human neutrophils (PMNs) during 2 hr incubation in RPMI-1640 was studied via flow cytometry and confocal microscopy. Flow cytometry was performed using an excitation wavelength of 488 nm, fluorescence being measured at 515–560 nm on 50,000 PMNs per sample. Confocal microscopy was performed on samples after further incubation with rhodamine-conjugated antiankyrin. Anti-CD44 resulted in an increase of 27–31% compared to control (P = 0.004) in the proportion of PMNs fluorescing, an increase of 17–24% (P = 0.001) in mean intracellular fluorescence per PMN, and an increase in total PMN fluorescence of 50–58% compared to control (P < 0.001). In contrast, anti-CD45 had little effect on phagocytosis. Colchicine (a microtubule-disrupting agent) enhanced, whereas cytochalasin-D (a microfilament inhibitor) inhibited bacterial phagocytosis; cytochalasin-D completely abrogated the effect of anti-CD44 on this PMN function. Hyaluronic acid augmented phagocytosis by an increment similar to that observed with anti-CD44. Two-color flow cytometry and confocal microscopy demonstrated that ankyrin always colocalized with ingested fluorescein isothiocyanate (FITC)-labeled bacteria. These data strongly suggest that CD44 is involved in bacterial phagocytosis, provide further evidence of CD44 receptor linkage to cytoskeletal elements in human leukocytes, and suggest that ankyrin has a significant role in the transport of phagosomes. © 1996 Wiley-Liss, Inc.  相似文献   
975.
976.
Several DNA viruses including Human Papillomavirus (HPV), Epstein-Barr virus (EBV), and Human cytomegalovirus (HCMV) are mechanistically associated with the development of human cancers (HPV, EBV) and/or modulation of the immune system (HCMV). Moreover, a number of distinct mechanisms have been described regarding the modulation of tumor cell response to ionizing radiation and evasion from the host immune system by viral factors. There is further accumulating interest in the treatment with immune-modulatory therapies such as immune checkpoint inhibitors for malignancies with a viral etiology. Also, patients with HPV-positive tumors have a significantly improved prognosis that is attributable to increased intrinsic radiation sensitivity and may also arise from modulation of a cytotoxic T cell response in the tumor microenvironment (TME). In this review, we will highlight recent advances in the understanding of the biological basis of radiation response mediated by viral pathogenic factors and evasion from and modulation of the immune system by viruses.  相似文献   
977.
Human CD4+CD25+FoxP3+ T regulatory cells (Tregs) control effector T cells and play a central role in peripheral tolerance and immune homeostasis. Heat shock protein 70 (HSP70) is a major immunomodulatory molecule, but its effect on the functions of Tregs is not well understood. To investigate target-dependent and –independent Treg functions, we studied cytokine expression, regulation of proliferation and cytotoxicity after exposure of Tregs to HSP70. HSP70-treated Tregs significantly inhibited proliferation of CD4+CD25 target cells and downregulated the secretion of the proinflammatory cytokines IFN-γ and TNF-α. By contrast, HSP70 increased the secretion of Treg suppressor cytokines IL-10 and TGF-β. Treatment with HSP70 enhanced the cytotoxic properties of Tregs only to a minor extent (4-fold), but led to stronger responses in CD4+CD25 cells (42-fold). HSP70-induced modulation of T-cell responses was further enhanced by combined treatment with HSP70 plus IL-2. Treatment of Tregs with HSP70 led to phosphorylation of PI3K/AKT and the MAPKs JNK and p38, but not that of ERK1/2. Exposure of Tregs to specific inhibitors of PI3K/AKT and the MAPKs JNK and p38 reduced the immunosuppressive function of HSP70-treated Tregs as indicated by the modified secretion of specific target cell (IFN-γ, TNF-α) and suppressor cytokines (IL-10, TGF-β). Taken together, the data show that HSP70 enhances the suppressive capacity of Tregs to neutralize target immune cells. Thus HSP70-enhanced suppression of Tregs may prevent exaggerated immune responses and may play a major role in maintaining immune homeostasis.  相似文献   
978.
Using a combination of v-myc and v-ras oncogenes, we have established a growth factor-independent monocyte cell line from murine fetal liver (FL-ras/myc). Biologic and molecular characterization demonstrated that the gene for the macrophage growth factor CSF-1 and the c-fms proto-oncogene (CSF-1 receptor) are expressed in this cell line, thus suggesting autocrine regulation as a possible mechanism for the unregulated growth of these cells. To study this possibility, we used 1) mAb, to neutralize the CSF-1 protein produced by the cell line, and 2) antisense oligomers, to inhibit CSF-1 gene products by specific base-pairing of complementary nucleic acids. We report here that both approaches inhibited in vitro cell growth by 60 to 70%, whereas the combination of oligomer and mAb inhibited proliferation by 95%. However, control antisense oligomers (50% bp mismatch with CSF-1 mRNA) did not inhibit FL-ras/myc cell growth. Furthermore, the inhibitory effects of mAb and oligomers were reversible when they were removed from the media. Detection of cell-associated CSF-1 protein by immunofluorescence showed that cells treated with the antisense oligomer expressed significantly less CSF-1 protein. These results indicate that the FL-ras/myc cell line requires CSF-1 for autonomous growth and that oligomers can efficiently block production of autocrine growth factors.  相似文献   
979.
Major shifts in the availability of palatable plant resources are of key relevance to the ecology of leaf‐cutting ants in human‐modified landscapes. However, our knowledge is still limited regarding the ability of these ants to adjust their foraging strategy to dynamic environments. Here, we examine a set of forest stand attributes acting as modulating forces for the spatiotemporal architecture of foraging trail networks developed by Atta cephalotes L. (Hymenoptera: Formicidae: Attini). During a 12‐month period, we mapped the foraging systems of 12 colonies located in Atlantic forest patches with differing size, regeneration age, and abundance of pioneer plants, and examined the variation in five trail system attributes (number of trails, branching points, leaf sources, linear foraging distance, and trail complexity) in response to these patch‐related variables. Both the month‐to‐month differences (depicted in annual trail maps) and the steadily accumulating number of trails, trail‐branching points, leaf sources, and linear foraging distance illustrated the dynamic nature of spatial foraging and trail complexity. Most measures of trail architecture correlated positively with the number of pioneer trees across the secondary forest patches, but no effects from patch age and size were observed (except for number of leaf sources). Trail system complexity (measured as fractal dimension; Df index) varied from 1.114 to 1.277 along the 12 months through which ant foraging was monitored, with a marginal trend to increase with the abundance of pioneer stems. Our results suggest that some leaf‐cutting ant species are able to generate highly flexible trail networks (via fine‐tuned adjustment of foraging patterns), allowing them to profit from the continuous emergence/recruitment of palatable resources.  相似文献   
980.
Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.Subject terms: Acetylation, Oncogenes  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号