首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   31篇
  564篇
  2021年   4篇
  2016年   9篇
  2015年   15篇
  2014年   16篇
  2013年   17篇
  2012年   24篇
  2011年   28篇
  2010年   14篇
  2009年   15篇
  2008年   25篇
  2007年   27篇
  2006年   22篇
  2005年   30篇
  2004年   23篇
  2003年   28篇
  2002年   24篇
  2001年   18篇
  2000年   30篇
  1999年   18篇
  1998年   3篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   7篇
  1991年   9篇
  1990年   14篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1971年   2篇
  1970年   7篇
  1969年   9篇
  1968年   9篇
  1967年   5篇
  1870年   2篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
31.
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.  相似文献   
32.
33.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   
34.
In the course of a cell-cell interaction, 12-HETE (12-hydroxy-5,8,10,14-eicosatetraenoic acid), the arachidonic acid lipoxygenase product released from stimulated platelets, is metabolized by a cytochrome P-450 enzyme system in unstimulated neutrophils to 12,20-DiHETE (12,20-dihydroxy-5,8,10,14-eicosatetraenoic acid). This report describes time-dependent formation of a new eicosanoid by unstimulated neutrophils exposed to 12-HETE, which is more polar than 12,20-DiHETE (reversed-phase high performance liquid chromatography). Time course studies indicated that the precursor compound of this new eicosanoid was 12,20-DiHETE. This was determined by incubation of purified 12,20-DiHETE with neutrophils, which resulted in a progressive decrease in 12,20-DiHETE as formation of the polar metabolite increased. In the absence of neutrophils, 12,20-DiHETE was quantitatively unchanged. The new metabolite of 12,20-DiHETE was identified as 12-hydroxyeicosatetraen-1,20-dioic acid, based upon its UV spectrum, co-chromatography with a chemically synthesized standard in both high performance liquid chromatography and thin layer chromatography systems, and gas chromatography-mass spectrometry. Formation of 12-HETE-1,20-dioic acid was partially inhibited by 20-hydroxy-LTB4. This indicated that the neutrophil dehydrogenase responsible for further metabolism of 12,20-DiHETE may also be involved in conversion of 20-hydroxy-LTB4 to 20-carboxy-LTB4. The 12,20-DiHETE dehydrogenase enzyme system specifically requires NAD as cofactor and has subcellular components in both cytosolic and microsomal fractions which are synergistic in their activity. These results provide additional evidence for the occurrence of multicellular metabolic events during hemostasis, thrombosis, and the inflammatory response.  相似文献   
35.
As Drosophila melanogaster does not contain glutathione reductase, the thioredoxin system has a key function for glutathione disulfide reduction in insects (Kanzok, S. M., Fechner, A., Bauer, H., Ulschmid, J. K., Müller, H. M., Botella-Munoz, J., Schneuwly, S., Schirmer, R. H., and Becker, K. (2001) Science 291, 643-646). In view of these unique conditions, the protein systems participating in peroxide metabolism and in redox signaling are of special interest. The genes for a second thioredoxin (DmTrx-2) and a thioredoxin peroxidase (DmTPx-1) were cloned and expressed, and the proteins were characterized. In its disulfide form, the 13-kDa protein thioredoxin-2 is a substrate of thioredoxin reductase-1 (K(m) = 5.2 microm, k(cat) = 14.5 s(-1)) and in its dithiol form, an electron donor for TPx-1 (K(m) = 9 microm, k(cat) = 5.4 s(-1)). DmTrx-2 is capable of reducing glutathione disulfide with a second order rate constant of 170 m(-1) s(-1) at pH 7.4 and 25 degrees C. Western blot analysis indicated that this thioredoxin represents up to 1% of the extractable protein of D. melanogaster Schneider cells or whole fruit flies. Recombinant thioredoxin peroxidase-1 (subunit molecular mass = 23 kDa) was found to be a decameric protein that can efficiently use Trx-2 but not Trx-1 as a reducing substrate. The new electron pathway found in D. melanogaster is also representative for insects that serve as vectors of disease. As a first step we have cloned and functionally expressed the gene that is the orthologue of DmTrx-2 in the malaria mosquito Anopheles gambiae.  相似文献   
36.
Superoxide release by zymosan-stimulated rat Kupffer cells in vitro   总被引:9,自引:0,他引:9  
Kupffer cells were isolated from pronase-perfused rat livers and were maintained as a monolayer culture in a state of high purity and viability. Immediately after contact with zymosan particles, O2 uptake of the Kupffer cells increased fivefold; about 50% of the net oxygen consumed was accounted for as superoxide released into the medium. Concomitantly, a transient burst of luminol-dependent chemiluminescence, an increased activity of NAD(P)H oxidase and a stimulation of the flow of glucose through the hexose monophosphate shunt were observed. Chemiluminescence and O2- production were almost completely inhibited by superoxide dismutase and iodoacetate. Zymosan-induced chemiluminescence was not inhibited in the presence of the non-penetrating thiol reagents, 5,5'-dithio-bis-2-nitrobenzoate and iodoacetyl-sepharose. Iodoacetate acted on the cytosolic glucose-6-phosphate dehydrogenase rather than on NAD(P)H oxidase of the cell membrane.  相似文献   
37.
Maltoporin allows permeation of long maltodextrin chains. It tightly binds the amphiphilic sugar, offering both hydrophobic interactions with a helical lane of aromatic residues and H bonds with ionic side chains. The minimum-energy path of maltohexaose translocation is obtained by the conjugate peak refinement method, which optimizes a continuous string of conformers without applying constraints. This reveals that the protein is passive while the sugar glides screw-like along the aromatic lane. Near instant switching of sugar hydroxyl H bond partners results in two small energy barriers (of approximately 4 kcal/mol each) during register shift by one glucosyl unit, in agreement with a kinetic analysis of experimental dissociation rates for varying sugar chain lengths. Thus, maltoporin functions like an efficient translocation "enzyme," and the slow rate of the register shift (approximately 1/ms) is due to high collisional friction.  相似文献   
38.
Proteins that associate with lamins: many faces, many functions   总被引:1,自引:0,他引:1  
  相似文献   
39.
Falck B  Bendsoe N  Ronquist G 《Amino acids》2004,26(2):133-138
Summary. L-3,4-dihydroxyphenylalanine (L-dopa) is not metabolized within human epidermal Langerhans cells (LC); yet they can take up substantial amounts of this amino acid which subsequently can be released into the extracellular space. We recently reported that human epidermal energy metabolism is predominantly anaerobic and that the influx mechanism is a unidirectional L-dopa/proton counter-transport system and now we describe conditions for the mediated transport of L-dopa out of the LC. It is demonstrated that certain amino acids and one dipeptide can effectively trigger the efflux of L-dopa taken up by the LC.Thus, -methyl-dopa (-m-dopa), D-dopa and the dipeptide, met–ala at the outside of the plasma membrane stimulated the efflux of L-dopa from L-dopa loaded LC. Similar effects were achieved by a variety of other amino acids in the extracellular fluid while some other amino acids were inactive. The time required for 50% D-methionine-induced exodus of L-dopa from L-dopa loaded LC was in the range of 5–7min and a complete exodus of L-dopa was attained at about 20min of incubation. This dislocation of L-dopa to the extracellular fluid is interpreted as an expression of trans-stimulation. In the case of -m-dopa, D-dopa and met–ala, which admittedly were not able to penetrate the plasma membrane of LC, the concept of trans-stimulation was given a new purport, since none of them were able to participate in an exchange reaction. Finally, it could be concluded that L-dopa escaped by a route different from the one responsible for L-dopa uptake in LC.Thus, while the influx of L-dopa supports extrusion of protons deriving from anaerobic glycolysis in the LC, L-dopa efflux can provide the cells with useful amino acids in an energy-saving way, altogether a remarkable biological process. From this follows that L-dopa has a biological function of its own, besides being a precursor in the catecholamine and pigment syntheses.  相似文献   
40.
There is preliminary experimental evidence indicating that the major outer-membrane protein (MOMP) of Chlamydia is a porin. We tested this hypothesis for the MOMP of the mouse pneumonitis serovar of Chlamydia trachomatis using two secondary structure prediction methods. First, an algorithm that calculates the mean hydrophobicity of one side of putative beta-strands predicted the positions of 16 transmembrane segments, a structure common to known porins. Second, outer loops typical of porins were assigned using an artificial neural network trained to predict the topology of bacterial outer-membrane proteins with a predominance of beta-strands. A topology model based on these results locates the four variable domains (VDs) of the MOMP on the outer loops and the five constant domains on beta-strands and the periplasmic turns. This model is consistent with genetic analysis and immunological and biochemical data that indicate the VDs are surface exposed. Furthermore, it shows significant homology with the consensus porin model of the program FORESST, which contrasts a proposed secondary structure against a data set of 349 proteins of known structure. Analysis of the MOMP of other chlamydial species corroborated our predicted model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号