首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   19篇
  国内免费   1篇
  475篇
  2023年   8篇
  2022年   12篇
  2021年   30篇
  2020年   14篇
  2019年   19篇
  2018年   16篇
  2017年   11篇
  2016年   15篇
  2015年   19篇
  2014年   22篇
  2013年   30篇
  2012年   31篇
  2011年   24篇
  2010年   18篇
  2009年   10篇
  2008年   15篇
  2007年   29篇
  2006年   20篇
  2005年   22篇
  2004年   16篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1997年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1961年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
71.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   
72.
Mocci F  Saba G 《Biopolymers》2003,68(4):471-485
Molecular dynamics simulations have been employed to probe the sequence-specific binding of sodium ions to the minor groove of B-DNA of three A. T-rich oligomers having identical compositions but different orders of the base pairs: C(AT)(4)G, CA(4)T(4)G, and CT(4)A(4)G. Recent experimental investigations, either in crystals or in solution, have shown that monovalent cations bind to DNA in a sequence-specific mode, preferentially in the narrow minor groove regions of uninterrupted sequences of four or more adenines (A-tracts), replacing a water molecule of the ordered hydration structure, the hydration spine. Following this evidence, it has been hypothesized that in A-tracts these events may be responsible for structural peculiarities such as a narrow minor groove and a curvature of the helix axis. The present simulations confirm a sequence specificity of the binding of sodium ions: Na(+) intrusions in the first layer of hydration of the minor groove, with long residence times, up to approximately 3 ns, are observed only in the minor groove of A-tracts but not in the alternating sequence. The effects of these intrusions on the structure of DNA depend on the ion coordination: when the ion replaces a water molecule of the spine, the minor groove becomes narrower. Ion intrusions may also disrupt the hydration spine modifying the oligomer structure to a large extent. However, in no case intrusions were observed to locally bend the axis toward the minor groove. The simulations also show that ions may reside for long time periods in the second layer of hydration, particularly in the wider regions of the groove, often leading to an opening of the groove.  相似文献   
73.
The hepatitis C virus (HCV) is both hepatotropic and lymphotropic, responsible for a great number of hepatic and extrahepatic immune-system disorders that comprise the so-called HCV syndrome. HCV-associated rheumatic diseases are characterized by frequent clinico-serological overlap; therefore, correct classification of individual patients is necessary before therapeutic decisions are made. This is particularly difficult to do, however, because of the coexistence of viral infection and complex autoimmune alterations. In this context, mixed cryoglobulinemia syndrome (MCs) represents the prototype of virus-related autoimmune-lymphoproliferative diseases. MCs can be treated at different levels by means of etiological treatment with antivirals (peg-interferon-alpha plus ribavirin) aimed at HCV eradication and/or pathogenetic/symptomatic treatments directed to both immune-system alterations and the vasculitic process (rituximab, cyclophosphamide, steroids, plasmapheresis, and so on). In clinical practice, the therapeutic strategy should be modulated according to severity/activity of the MCs and possibly tailored to each individual patient's conditions. Cryoglobulinemic skin ulcers may represent a therapeutic challenge, which should be managed by means of both local and systemic treatments. HCV-associated arthritis should be differentiated from the simple comorbidity of HCV infection and classical rheumatoid arthritis. It may be treated with low doses of steroids and/or hydroxychloroquine; the use of biologics (rituximab) may be considered in more severe cases. Primary Sj?gren's syndrome is rarely associated with HCV infection, while sicca syndrome and myalgia are frequently detectable in hepatitis C patients, with or without cryoglobulinemic vasculitis. Other autoimmune rheumatic disorders (poly/dermatomyositis, polyarteritis nodosa, osteosclerosis, fibromyalgia, and so on) have been reported as potentially associated with HCV infection in patient populations from different countries, suggesting the role of genetic and/or environmental co-factors. The therapeutic approach to these disorders should be decided according to each individual patient's evaluation, including hepatic, virological, and immunological findings.  相似文献   
74.
Understanding the ecological mechanisms that allow a species to transition from an occasional understory component to the dominant type in the forest canopy is essential for predicting future shifts in the distribution of species. We investigated this issue with regard to yew, also because mature yew trees have been reported to inhibit self-regeneration and seedling survival, prompting concerns for the long-term preservation of the species. Our objectives were (a) to quantify spatial patterns of yew (Taxus baccata L.) populations near the southern limit of the species’ ecological distribution, (b) to determine the relationships between yew presence and topographic gradients, and (c) to answer the question of how yew regeneration is affected by such patterns and relationships. We analyzed three extensive yew populations (90–165 ha, including 3–12 thousand established individuals) that mostly occupy the understory of beech forests located in protected areas of the central Apennines (Italy). Overall, the realized niche of yew (either as established trees, saplings, or seedlings) followed the expected bell-shaped curve of a species response to an environmental gradient. Yew was mainly found at 1,000–1,600 m elevation on mesic exposures (north and west) and intermediate slopes (30–60%). Geostatistical analysis revealed that yew occurred in patches, as shown by variogram ranges of 40–110 m for yew tree basal area and regeneration abundance. Yew regeneration over the landscape was directly related to basal area of yew trees. At local scales (~10 m), presence of established trees favored regeneration in relatively less developed stands, whereas high density of mature yews suppressed regeneration. Healthy yew populations in beech forests had a minimum size of 0.5–3 ha. As yew density increased within these patches, regeneration dropped, so that yew conservation cannot be limited to presently occurring populations, despite the longevity and potential for vegetative reproduction of the species. Disturbance from grazing and wildfire was also found to impact yew survival. Long-term existence of yew in the Italian Apennines depends on maintaining and expanding old-growth beech forests that incorporate yew patches, and have a minimum continuous cover equivalent to a relatively undisturbed regime (10–50 ha).  相似文献   
75.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P? and S1P? receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.  相似文献   
76.
77.
Compositional studies comparing transgenic with non-transgenic counterpart plants are almost universally required by governmental regulatory bodies. In the present study, two T2 transgenic cotton lines containing chitinase (Line 11/57) and Bt lines (Line 61) were compared with non-transgenic counterpart. To do this, biochemical characteristics of leaves and seeds, including amino acids, fatty acids, carbohydrates, anions, and cations contents of the studied lines were analyzed using GC/MS, high-performance liquid chromatography (HPLC), and ion chromatography (IC) analyzers, respectively. polymerase chain reaction (PCR) and Western blot analyses confirmed the presence and expression of Chi and Bt genes in the studied transgenic lines. Although, compositional analysis of leaves contents confirmed no significant differences between transgenic and non-transgenic counterpart lines, but it was shown that glucose content of chitinase lines, fructose content of transgenic lines (Bt and chitinase) and asparagine and glutamine of chitinase lines were significantly higher than the non-transgenic counterpart plants. Both the transgenic lines (Bt and chitinase) showed significant decrease in the amounts of sodium in comparison to the non-transgenic counterpart plants. The experiments on the seeds showed that histidine, isoleucine, leucine, and phenylalanine contents of all transgenic and non-transgenic lines were the same, whereas other amino acids were significantly increased in the transgenic lines. Surprisingly, it was observed that the concentrations of stearic acid, myristic acid, oleic acid, and linoleic acid in the chitinase line were significantly different than those of non-transgenic counterpart plants, but these components were the same in both Bt line and its non-transgenic counterpart. It seems that more changes observed in the seed contents than leaves is via this point that seeds are known as metabolites storage organs, so they show greater changes in the metabolites contents comparing to the leaves.  相似文献   
78.
Exposure of lung endothelial monolayers to tumor necrosis factor (TNF)-alpha causes a rearrangement of the fibrillar fibronectin (FN) extracellular matrix and an increase in protein permeability. Using calf pulmonary artery endothelial cell layers, we determined whether these changes were mediated by FN multimerization due to enhanced transglutaminase activity after TNF-alpha (200 U/ml) for 18 h. Western blot analysis indicated that TNF-alpha decreased the amount of monomeric FN detected under reducing conditions. Analysis of (125)I-FN incorporation into the extracellular matrix confirmed a twofold increase in high molecular mass (HMW) FN multimers stable under reducing conditions (P < 0.05). Enhanced formation of such HMW FN multimers was associated with increased cell surface transglutaminase activity (P < 0.05). Calf pulmonary artery endothelial cells pretreated with TNF-alpha also formed nonreducible HMW multimers of FN when layered on surfaces precoated with FN. Inhibitors of transglutaminase blocked the TNF-alpha-induced formation of nonreducible HMW multimers of FN but did not prevent either disruption of the FN matrix or the increase in monolayer permeability. Thus increased cell surface transglutaminase after TNF-alpha exposure initiates the enhanced formation of nonreducible HMW FN multimers but did not cause either the disruption of the FN matrix or the increase in endothelial monolayer permeability.  相似文献   
79.
The 120-kDa Na+/Ca2+ exchanger was purified and reconstituted into lipid vesicles. The secondary structure composition of the exchanger was 39% alpha-helices, 20% beta-sheets, 25% beta-turns, and 16% random coils, as analyzed by Fourier transform infrared attenuated total reflection spectroscopy. The secondary structure composition of the COOH-terminal portion of the protein was compatible with a topology model containing 4-6 transmembrane segments. Furthermore, the secondary structure of the NH2-terminal portion of the cytoplasmic loop was analyzed and found to be different from that of the COOH-terminal portion. Ca2+ and/or the exchange inhibitory peptide (XIP) failed to affect the secondary structure of the 120-kDa protein. Tertiary structure modifications induced by Ca2+ and XIP were analyzed by monitoring the hydrogen/deuterium exchange rate for the reconstituted exchanger. In the absence of ligand, 51% of the protein was accessible to solvent. Ca2+ decreased accessibility to 40%, implicating the shielding of at least 103 amino acids. When both Ca2+ and XIP were added, accessibility increased to 66%. No modification was obtained when XIP was added alone. Likewise, in the presence of Ca2+, XIP failed to modify the tertiary structure of the 70-kDa protein, suggesting that XIP acts at the level of the COOH-terminal portion of the intracellular loop. The present data describe, for the first time, conformational changes of the Na+/Ca2+ exchanger induced by Ca2+ and XIP, compatible with an interaction model where regulatory Ca2+ and inhibitory XIP bind to distinct sites, and where XIP binding requires the presence of Ca2+.  相似文献   
80.
A heterologous transformation system was developed for V. lecanii based on the complementation of a nitrate reductase mutant. Nitrate reductase mutants were obtained by resistance to chlorate in a rate of 23.24% when compared to other mutations that lead to the chlorate resistance. Mutant no. 01 and 04 was chosen for the transformation experiments. Plasmid pBT was used as transformation vector containing the Aspergillus nidulans nitrate reductase gene. A frequency of approximately 3 transformants/μg DNA was obtained using the circular vector pBT. The establishment of a transformation system for V. lecanii is fundamental for genetic manipulation of this microorganism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号