全文获取类型
收费全文 | 231篇 |
免费 | 23篇 |
专业分类
254篇 |
出版年
2023年 | 3篇 |
2021年 | 7篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 18篇 |
2012年 | 33篇 |
2011年 | 8篇 |
2010年 | 10篇 |
2009年 | 6篇 |
2008年 | 12篇 |
2007年 | 12篇 |
2006年 | 14篇 |
2005年 | 10篇 |
2004年 | 7篇 |
2003年 | 11篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 8篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 4篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1970年 | 2篇 |
1967年 | 1篇 |
排序方式: 共有254条查询结果,搜索用时 31 毫秒
71.
72.
Artemis Giannakopoulou Sebastian Schornack Tolga O. Bozkurt Dave Haart Dae-Kyun Ro Juan A. Faraldos Sophien Kamoun Paul E. O’Maille 《PloS one》2014,9(9)
Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins. 相似文献
73.
74.
Shahram Khademvatan Neda Adibpour Alborz Eskandari Saeed Rezaee Mahmoud Hashemitabar Fakher Rahim 《Experimental parasitology》2013
This in silico and in vitro comparative study was designed to evaluate the effectiveness of some biurets (K1 to K8) and glucantime against Leishmania major and Leishmania infantum promastigotes. Overall, eight experimental ligands and glucantime were docked using AutoDock 4.3 program into the active sites of Leishmania major and Leishmania infantum pteridine reductase 1, which were modeled using homology modeling programs. The colorimetric MTT assay was used to find L. major and L. infantum promastigotes viability at different concentrations of biuret derivatives in a concentration and time-dependent manner and the obtained results were expressed as 50% and 90% of inhibitory concentration (IC50 and IC90). In silico method showed that out of eight experimental ligands, four compounds were more active on pteridine reductase 1. K3 was the most active against L. major promastigotes with an IC50 of 6.8 μM and an IC90 of 40.2 μM, whereas for L. infantum promastigotes was K8 with IC50 of 7.8 μM. The phenylethyl derivative (K7) showed less toxicity (IC50s > 60 μM) in both Leishmania strains. Glucantime displayed less growth inhibition in concentration of about 20 μM. In silico and especially docking results in a recent study were in accordance with the in vitro activity of these compounds in presented study and compound K3, K2 and K8 showed reasonable levels of selectivity for the Leishmania pteridine reductase 1. 相似文献
75.
Diane G.O. Saunders Susan Breen Joe Win Sebastian Schornack Ingo Hein Tolga O. Bozkurt Nicolas Champouret Vivianne G.A.A. Vleeshouwers Paul R.J. Birch Eleanor M. Gilroy Sophien Kamoun 《The Plant cell》2012,24(8):3420-3434
Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor. 相似文献
76.
Sarah Green David J. Studholme Bridget E. Laue Federico Dorati Helen Lovell Dawn Arnold Joan E. Cottrell Stephen Bridgett Mark Blaxter Edgar Huitema Richard Thwaites Paul M. Sharp Robert W. Jackson Sophien Kamoun 《PloS one》2010,5(4)
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree. 相似文献
77.
A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease 总被引:1,自引:0,他引:1 下载免费PDF全文
There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions. 相似文献
78.
Promoter region of interleukin-2 gene undergoes chromatin structure changes and confers inducibility on chloramphenicol acetyltransferase gene during activation of T cells. 总被引:28,自引:12,他引:28 下载免费PDF全文
79.
Bhattacharjee S Hiller NL Liolios K Win J Kanneganti TD Young C Kamoun S Haldar K 《PLoS pathogens》2006,2(5):e50
Animal and plant eukaryotic pathogens, such as the human malaria parasite Plasmodium falciparum and the potato late blight agent Phytophthora infestans, are widely divergent eukaryotic microbes. Yet they both produce secretory virulence and pathogenic proteins that alter host cell functions. In P. falciparum, export of parasite proteins to the host erythrocyte is mediated by leader sequences shown to contain a host-targeting (HT) motif centered on an RxLx (E, D, or Q) core: this motif appears to signify a major pathogenic export pathway with hundreds of putative effectors. Here we show that a secretory protein of P. infestans, which is perceived by plant disease resistance proteins and induces hypersensitive plant cell death, contains a leader sequence that is equivalent to the Plasmodium HT-leader in its ability to export fusion of green fluorescent protein (GFP) from the P. falciparum parasite to the host erythrocyte. This export is dependent on an RxLR sequence conserved in P. infestans leaders, as well as in leaders of all ten secretory oomycete proteins shown to function inside plant cells. The RxLR motif is also detected in hundreds of secretory proteins of P. infestans, Phytophthora sojae, and Phytophthora ramorum and has high value in predicting host-targeted leaders. A consensus motif further reveals E/D residues enriched within approximately 25 amino acids downstream of the RxLR, which are also needed for export. Together the data suggest that in these plant pathogenic oomycetes, a consensus HT motif may reside in an extended sequence of approximately 25-30 amino acids, rather than in a short linear sequence. Evidence is presented that although the consensus is much shorter in P. falciparum, information sufficient for vacuolar export is contained in a region of approximately 30 amino acids, which includes sequences flanking the HT core. Finally, positional conservation between Phytophthora RxLR and P. falciparum RxLx (E, D, Q) is consistent with the idea that the context of their presentation is constrained. These studies provide the first evidence to our knowledge that eukaryotic microbes share equivalent pathogenic HT signals and thus conserved mechanisms to access host cells across plant and animal kingdoms that may present unique targets for prophylaxis across divergent pathogens. 相似文献
80.
Randall TA Dwyer RA Huitema E Beyer K Cvitanich C Kelkar H Fong AM Gates K Roberts S Yatzkan E Gaffney T Law M Testa A Torto-Alalibo T Zhang M Zheng L Mueller E Windass J Binder A Birch PR Gisi U Govers F Gow NA Mauch F van West P Waugh ME Yu J Boller T Kamoun S Lam ST Judelson HS 《Molecular plant-microbe interactions : MPMI》2005,18(3):229-243