首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3744篇
  免费   178篇
  国内免费   27篇
  3949篇
  2024年   11篇
  2023年   82篇
  2022年   184篇
  2021年   318篇
  2020年   160篇
  2019年   179篇
  2018年   254篇
  2017年   155篇
  2016年   223篇
  2015年   275篇
  2014年   294篇
  2013年   291篇
  2012年   299篇
  2011年   252篇
  2010年   162篇
  2009年   141篇
  2008年   139篇
  2007年   127篇
  2006年   87篇
  2005年   77篇
  2004年   47篇
  2003年   42篇
  2002年   29篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   4篇
  1968年   1篇
排序方式: 共有3949条查询结果,搜索用时 0 毫秒
991.
Soil disease-suppressiveness depends on complex interactions among pathogens, native microbiota, and physicochemical properties, while these interactions remain understudied. Comparing field and microcosm experiments, we investigated the significance of these interactions in disease emergence or suppression using structural equation modelling (SEM) and receiver operating characteristic curve (ROC) analyses. We observed significant differences in the relative abundance of pathogenic and beneficial microbes, alpha and beta diversity indices between disease-conducive and -suppressive rhizosphere soils. The pathogenic (Ralstonia) and beneficial (Bacillus) taxa dominated disease-conducive and -suppressive rhizosphere soils, respectively. Moreover, the co-occurrences of Ralstonia with native microorganisms were positive and negative in the disease-conducive and -suppressive soils, respectively. These results suggest the supportive (Rudaea) and suppressive (Enterobacter, Bacillus) role of indigenous microbes in the invasion of soil and plant systems by Ralstonia. The SEM and ROC analysis predicted that Ralstonia invaded rhizospheric microbial networks and caused peanut wilt under high than low soil phosphorus conditions. Our results suggest the importance of soil phosphorus availability in altering the microbial interactions, thus leading to soil invasion by Ralstonia. Thus, we conclude by saying that feeding soil with high amounts of available phosphorus could deplete plant-beneficial microbes and increase the pathobiome abundance that may compromise plant health.  相似文献   
992.
Infections by more than one strain of a pathogen predominate under natural conditions. Mixed infections can have significant, though often unpredictable, consequences for overall virulence, pathogen transmission and evolution. However, effects of mixed infection on disease development in plants often remain unclear and the critical factors that determine the outcome of mixed infections remain unknown. The fungus Zymoseptoria tritici forms genetically diverse infections in wheat fields. Here, for a range of pathogen traits, we experimentally decompose the infection process to determine how the outcomes and consequences of mixed infections are mechanistically realized. Different strains of Z. tritici grow in close proximity and compete in the wheat apoplast, resulting in reductions in growth of individual strains and in pathogen reproduction. We observed different outcomes of competition at different stages of the infection. Overall, more virulent strains had higher competitive ability during host colonization, and less virulent strains had higher transmission potential. We showed that within-host competition can have a major effect on infection dynamics and pathogen population structure in a pathogen and host genotype-specific manner. Consequently, mixed infections likely have a major effect on the development of septoria tritici blotch epidemics and the evolution of virulence in Z. tritici.  相似文献   
993.
This research study is mainly focused to evaluate the anti-parasitic, insecticidal, cytotoxic and anti-alzheimer potential of various leaf extracts of Ajuga bracteosa Wallich ex Bentham. 04 different extracts were prepared using solvent of different polarity to determine the best candidate for potent bioactivity i.e. n-hexane (NH), Ethyl acetate (EA), Ethanol (EL) and Chloroform (CH). Concentrations of each extracts were made specified for all activities. All extracts were exploited for broad range of biomedical applications including leishmaniasis, in vitro anti-Alzheimer, insecticidal and cytotoxic studies. Our results showed that A. bracteosa n-hexane extract was highly active against Leishmania Tropica with significant inhibition of 58 ± 1.61 for promastigote and 63 ± 2.29 for amastigote at 1000 μg/mL. Furthermore, promising anti-alzheimer activity acetylcholinesterase (AChE) 46 ± 0.83 and butrylcholineterase (BChE) 49 ± 1.17 was noted for n-hexane. The insecticidal potential of these extracts were test against five different insects (Rhyzopertha dominica, Trogoderma granarium, Tribolium castaneum, Sitophilus oryze, and Callosobruchus analis). The higest mortality rate of insecticidal activity was recorded by n-hexane followed by Ethyl acetate whereas ethanol extract was found to be less effective against all the test species. Significant cytotoxic potential of each plant sample against Artemia salina thus aware us for further detailed research to find out novel drugs. Based on our results we believe that Ajuga bracteosa could be used to develop as a potential botanical insecticide against different insect and pests, such as aphids as well as an excellent source for the compound isolation as anti-tumor agent.  相似文献   
994.
Acta Biotheoretica - Radial growth has long been a subject of interest in tree biology research. Recent studies have brought a significant change in the understanding of some basic processes...  相似文献   
995.
Key message

Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change.

Abstract

Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant’s antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.

  相似文献   
996.
Molecular and Cellular Biochemistry - In recent times cardiovascular diseases (CVDs) are the leading cause of mortality universally, caused more or less 17.7 million casualties with 45% of all...  相似文献   
997.
Aedes aegypti is the primary vector of arthropod-borne viruses including dengue, chikungunya and Zika. Vector population control methods are reviving to impede disease transmission. An efficient sex separation for male-only releases is crucial for area-wide mosquito population suppression strategies. Here, we report on the construction of two genetic sexing strains using red- and white-eye colour mutations as selectable markers. Quality control analysis showed that the Red-eye genetic sexing strains (GSS) is better and more genetically stable than the White-eye GSS. The introduction of an irradiation-induced inversion (Inv35) increases genetic stability and reduces the probability of female contamination of the male release batches. Bi-weekly releases of irradiated males of both the Red-eye GSS and the Red-eye GSS/Inv35 fully suppressed target laboratory cage populations within six and nine weeks, respectively. An image analysis algorithm allowing sex determination based on eye colour identification at the pupal stage was developed. The next step is to automate the Red-eye-based genetic sexing and validate it in pilot trials prior to its integration in large-scale population suppression programmes.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.  相似文献   
998.
Plant Cell, Tissue and Organ Culture (PCTOC) - Oryza alta Swallen is an important germplasm for rice resistance breeding; however, its CCDD genome (2n?=?48) resulted in low crossability...  相似文献   
999.
1000.
Wetlands Ecology and Management - Long-term data of local bird communities have shown changes over the past few decades due to anthropogenic pressures, especially in temperate regions. However, we...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号