全文获取类型
收费全文 | 2524篇 |
免费 | 187篇 |
国内免费 | 5篇 |
专业分类
2716篇 |
出版年
2024年 | 8篇 |
2023年 | 22篇 |
2022年 | 78篇 |
2021年 | 118篇 |
2020年 | 91篇 |
2019年 | 196篇 |
2018年 | 141篇 |
2017年 | 76篇 |
2016年 | 113篇 |
2015年 | 145篇 |
2014年 | 129篇 |
2013年 | 188篇 |
2012年 | 234篇 |
2011年 | 194篇 |
2010年 | 107篇 |
2009年 | 104篇 |
2008年 | 127篇 |
2007年 | 109篇 |
2006年 | 106篇 |
2005年 | 87篇 |
2004年 | 67篇 |
2003年 | 65篇 |
2002年 | 53篇 |
2001年 | 11篇 |
2000年 | 14篇 |
1999年 | 14篇 |
1998年 | 10篇 |
1997年 | 12篇 |
1995年 | 6篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 7篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1982年 | 3篇 |
1979年 | 2篇 |
1978年 | 5篇 |
1977年 | 8篇 |
1976年 | 3篇 |
1974年 | 3篇 |
1973年 | 5篇 |
1972年 | 3篇 |
1971年 | 3篇 |
1967年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有2716条查询结果,搜索用时 18 毫秒
61.
Deepak Jain Gesine Weber Daniel Eberhard Amir E. Mehana Jan Eglinger Alena Welters Barbara Bartosinska Kay Jeruschke Jürgen Weiss Günter P?th Hiroyoshi Ariga Jochen Seufert Eckhard Lammert 《PloS one》2015,10(9)
A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson’s disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting. 相似文献
62.
A midgut cadherin AgCad1 cDNA was cloned from Anopheles gambiae larvae and analyzed for its possible role as a receptor for the Cry4Ba toxin of Bacillus thuringiensis strain israelensis. The AgCad1 cadherin encodes a putative 1735-residue protein organized into an extracellular region of 11 cadherin repeats (CR) and a membrane-proximal extracellular domain (MPED). AgCad1 mRNA was detected in midgut of larvae by polymerase chain reaction (PCR). The AgCad1 protein was localized, by immunochemistry of sectioned larvae, predominately to the microvilli in posterior midgut. The localization of Cry4Ba binding was determined by the same technique, and toxin bound microvilli in posterior midgut. The AgCad1 protein was present in brush border membrane fractions prepared from larvae, and Cry4Ba toxin bound the same-sized protein on blots of those fractions. The AgCad1 protein was expressed transiently in Drosophila melanogaster Schneider 2 (S2) cells. 125I-Cry4Ba toxin bound AgCad1 from S2 cells in a competitive manner. Cry4Ba bound to beads extracted 200 kDa AgCad1 and a 29 kDa fragment of AgCad1 from S2 cells. A peptide containing the AgCad1 region proximal to the cell (CR11-MPED) was expressed in Escherichia coli. Although Cry4Ba showed limited binding to CR11-MPED, the peptide synergized the toxicity of Cry4Ba to larvae. AgCad1 in the larval brush border is a binding protein for Cry4Ba toxin. On the basis of binding results and CR11-MPED synergism of Cry4Ba toxicity, AgCad1 is probably a Cry4Ba receptor. 相似文献
63.
64.
Amir Malaki Nik Marcela Alexander Vaino Poysa Lorna Woodrow Milena Corredig 《Food biophysics》2011,6(1):26-36
The effect of soy protein subunit composition on the acid-induced aggregation of soymilk was investigated by preparing soymilk
from different soybean lines lacking specific glycinin and β-conglycinin subunits. Acid gelation was induced by glucono-δ-lactone
(GDL) and analysis was done using diffusing wave spectroscopy and rheology. Aggregation occurred near pH 5.8 and the increase
in radius corresponded to an increase in the elastic modulus measured by small deformation rheology. Diffusing wave spectroscopy
was also employed to follow acid gelation, and data indicated that particle interactions start to occur at a higher pH than
the pH of onset of gelation (corresponding to the start of the rapid increase in elastic modulus). The protein subunit composition
significantly affected the development of structure during acidification. The onset of aggregation occurred at a higher pH
for soymilk samples containing group IIb (the acidic subunit A3) of glycinin, than for samples prepared from Harovinton (a commercial variety containing all subunits) or from genotypes
null in glycinin. The gels made from lines containing group I (A1, A2) and group IIb (A3) of glycinin resulted in stiffer acid gels compared to the lines containing only β-conglycinin. These results confirmed that
the ratio of glycinin/β-conglycinin has a significant effect on gel structure, with an increase in glycinin causing an increase
in gel stiffness. The type of glycinin subunits also affected the aggregation behavior of soymilk. 相似文献
65.
Ira Marton Amir Zuker Elena Shklarman Vardit Zeevi Andrey Tovkach Suzy Roffe Marianna Ovadis Tzvi Tzfira Alexander Vainstein 《Plant physiology》2010,154(3):1079-1087
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants. 相似文献
66.
Josep Bassaganya-Riera Sarah Misyak Amir J. Guri Raquel Hontecillas 《Cellular immunology》2009,258(2):138-5418
Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. 相似文献
67.
A simple and rapid flow-injection method is described for the determination of iodide, based on potassium permanganate chemiluminescence detection via oxidation of formaldehyde in aqueous hydrochloric acid. The calibration graph was linear over the range 1.0-12 x 10(-6) mol/L (r2 = 0.9955) with relative standard deviations (n = 4) in the range 1.0-3.5%. The detection limit (3sigma) was 1.0 x 10(-7) mol/L, with sample throughput of 120/h. The effect of interfering cations [Ca(II), Mg(II), Ni(II), Fe(II), Fe(III) and Pb(II)] and anions (Cl-, SO4(2-), PO4(3-), NO3-, NO2-, F- and SO3(2-)) were studied. The method was applied to iodized salt samples and the results obtained in the range 0.03 +/- 0.005 - 0.10 +/- 0.006 mg I/g were in reasonable agreement with the amount labelled. The method was statistically compared with the results obtained by titration; no significant disagreement at 95% confidence was observed. 相似文献
68.
Diana Villegas-Coronado Jesús Adriana Soto-Guzman Juan Manuel Martínez-Soto Nayelli Guadalupe Teran-Saavedra Ana Maria Guzman-Partida Luz Vazquez-Moreno Ana Gloria Villalba-Villalba Amir Maldonado Irlanda Lagarda-Diaz 《化学与生物多样性》2023,20(7):e202300051
Acute monocytic leukemia is a type of myeloid leukemia that develops in monocytes. The current clinical therapies for leukemia are unsatisfactory due to their side effects and nonspecificity toward target cells. Some lectins display antitumor activity and may specifically recognize cancer cells by binding to carbohydrate structures on their surface. Therefore, this study evaluated the response of the human monocytic leukemia cell lines THP-1 to the Olneya tesota PF2 lectin. The induction of apoptosis and reactive oxygen species production in PF2-treated cells was evaluated by flow cytometry, and the lectin-THP-1 cell interaction and mitochondrial membrane potential were evaluated by confocal fluorescence microscopy. PF2 genotoxicity was evaluated by DNA fragmentation analysis via gel electrophoresis. The results showed that PF2 binds to THP-1 cells, triggers apoptosis and DNA degradation, changes the mitochondrial membrane potential, and increases reactive oxygen species levels in PF2-treated THP-1 cells. These results suggest the potential use of PF2 for developing alternative anticancer treatments with enhanced specificity. 相似文献
69.
David JR Araripe LO Bitner-Mathé BC Capy P Goñi B Klaczko LB Legout H Martins MB Vouidibio J Yassin A Moreteau B 《Genetica》2006,128(1-3):109-122
Zaprionus indianus is a cosmopolitan drosophilid, of Afrotropical origin, which has recently colonized South America. The sexual dimorphism
(SD) of body size is low, males being almost as big as females. We investigated 10 natural populations, 5 from America and
5 from Africa, using the isofemale line technique. Three traits were measured on each fly: wing and thorax length and sternopleural
bristle number. Two indices of SD were compared, and found to be highly correlated (r > 0.99). For the sake of simplicity, only the female/male (F/M) ratio was further considered. A significant genetic variability
of SD was found in all cases, although with a low heritability (intra-class correlation of 0.13), about half the value found
for the traits themselves. For size SD, we did not find any variation among continents or any latitudinal trend, and average
values were 1.02 for wing length and 1.01 for thorax length. Bristle number SD was much greater (1.07). Among mass laboratory
strains, SD was genetically much more variable than in recently collected populations, a likely consequence of laboratory
drift. Altogether, SD, although genetically variable and prone to laboratory drift, is independent of size variations and
presumably submitted to a stabilizing selection in nature. 相似文献
70.
The presence of neutralizing antibodies against viral hemorrhagic septicemia virus (VHSV-IVb) was investigated in sera of 13 fish species collected from Lake St. Clair, Michigan, USA, a VHSV-endemic water body. We tested 297 sera collected May 2004-June of 2010, using a complement-dependent 50% plaque neutralization test (50% PNT). Neutralizing antibodies were detected in 23% (67/297) of the samples. The highest overall antibody prevalence (85%, 34/40) and mean positive antibody titer (12,113 ± 11,699 SD) were detected in muskellunge (Esox masquinongy). Antibodies were also detected in 50% (15/30) of sampled northern pike (E. lucius), 25% (15/61) of freshwater drum (Aplodinotus grunniens), and 7% (3/41) of smallmouth bass (Micropterus dolomieu). All sera from channel catfish (Ictalurus punctatus), lake sturgeon (Acipenser fulvescens), quillback (Carpiodes cyprinus), rock bass (Ambloplites rupestris), shorthead redhorse (Moxostoma macrolepidotum), silver redhorse (M. anisurum), walleye (Sander vitreus), white perch (Morone americana), and yellow perch (Perca flavescens) were negative. Antibodies in one or more fish species were detected in all sampling years (2004, 2006, 2007, 2009, and 2010), whereas in parallel sampling periods, VHS virus was detected only in 2006 and 2009. Our results suggest the continued presence of VHSV-IVb in the Lake St. Clair ecosystem, and underscore the importance of assessing immune responses of fish populations to determine prior virus exposure. 相似文献