首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   12篇
  2021年   2篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   14篇
  2012年   6篇
  2011年   13篇
  2010年   12篇
  2009年   12篇
  2008年   6篇
  2007年   16篇
  2006年   12篇
  2005年   13篇
  2004年   10篇
  2003年   4篇
  2002年   2篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1995年   3篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1968年   3篇
  1930年   2篇
  1927年   2篇
  1926年   2篇
  1924年   1篇
  1915年   2篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
51.
Fourteen polymorphic microsatellite markers were isolated from the entomopathogenic fungus, Metarhizium anisopliae, based on enriched genomic libraries. In order to assess allelic variability, the microsatellite loci were analysed in a collection of 34 isolates sampled from across Switzerland. The number of detected alleles in 14 loci ranged from two to eight and expected heterozygosity from 0.265 to 0.808. Because of the high expected heterozygosity, the 14 microsatellite loci are very useful for ecological studies and analysis of population diversity, and to identifying, monitoring, and tracking M. anisopliae strains applied as biological control agents.  相似文献   
52.
Scaling of respiration from the leaf to the canopy level currently depends on identification of physiological parameters that are tightly linked to respiration and that can readily be determined. Several recent studies have helped provide guides to predicting whole canopy respiration on the basis of foliar nitrogen (N). This approach is potentially powerful owing to the well‐described patterns of allocation of N that follow interception of radiation. In the present study, we investigated the sensitivity of the N–respiration correlation to environmental and developmental factors, in order to evaluate its usage for attempts to scale respiration to the organism and ecosystem level. We studied fully expanded, 1 and 2‐year‐old, and current‐year needles from canopies of Pinus radiata that had been treated (unthinned, thinned and thinned+fertilized treatments) in ways likely to induce a wide range of growth and respiratory responses. We examined respiration in detail during the growth period in spring and again at the end of summer, using calorespirometric methods (combined measurements of CO2 and heat rates) to determine the respiration rates , instantaneous enthalpic growth rates (RSGΔHB, a measure of the conservation of electrons in anabolic products) and the enthalpy conversion efficiency (ηH) of needles differing in age. A general linear model revealed that was positively correlated with needle N, but this correlation was strongly dependent on the season and the needle age – indicating an important physiological difference between expanding young needles and fully expanded old needles. Furthermore, the strength of the correlation between needle N and respiration was comparatively weak for the current year, expanding foliage, indicating that factors other than foliage N significantly influenced the respiration of young needles. The analysis of instantaneous growth rates revealed two general processes. Older, nonexpanding foliage showed considerable rates of enthalpic growth (increases in enthalpy) that was mainly caused by the increment of lignin during secondary growth. Secondly, canopy development appeared dynamic and to be optimized according to environmental drivers and constraints – such as light and water availability. In late spring, needle extension slowed in the upper, but not the lower canopy, because the upper canopy appeared to be affected first by the onset of drought stress in late spring. Growth rates were reduced in the upper canopy despite greater rates of respiration, indicating higher demand of ATP for the maintenance of protein and for export of sugars. Consequently, the enthalpy conversion efficiency and enthalpic N productivity (enthalpic growth per unit N) were comparatively poor indicating advanced development of needles in the upper canopy. We suggest that the growth and maintenance paradigm of respiration is, at best, only moderately useful when applied to whole trees, and is not valid at the cellular level or that of the plant organ. A different concept, namely that of respiratory efficiency, seems a more suitable way to represent respiration in carbon (C) balance models and should help provide a better mechanistic understanding of how respiration affects the C conversion efficiency of plants, and ultimately the net primary productivity of ecosystems.  相似文献   
53.
54.
55.
Reperfusion of ischemic organs induces a potent inflammatory response initiated by the generation of reactive oxygen species that directly damage tissue and promote leukocyte infiltration and activation that also mediate tissue injury. We recently found that radiation-induced tissue injury, which is caused by radiation-induced reactive oxygen species, is attenuated by administration of CBLB502, a pharmacologically optimized derivative of the TLR5 agonist flagellin. Therefore, we tested the ability of CBLB502 to attenuate injury in a murine model of acute ischemic renal failure. CBLB502 given 30 min before imposition of bilateral renal pedicle occlusion provided marked protection against the renal dysfunction and inflammation that follows reperfusion of ischemic kidneys, including marked decreases in leukocyte infiltration, proinflammatory cytokine production, and tubular injury. Importantly, CBLB502 given within 30 min after ischemic kidney reperfusion reproduced the protective effects of pretreatment with the TLR5 agonist, indicating a window following reperfusion in which CBLB502 administration abrogates acute renal ischemic failure. Bone marrow-reconstituted chimeras were used to show that the protective effects of CBLB502 could be delivered by intact MyD88 signaling on renal parenchymal cells. Consistent with this, Ab staining of kidney sections indicated that cells lining the renal vasculature expressed TLR5. Overall, these results indicate the use of TLR5 agonists as mitigators and protectants of acute renal ischemic failure.  相似文献   
56.
The basal anomodont Suminia getmanovi Ivakhnenko, 1994 from the late Palaeozoic of Russia is highly specialized in its masticatory apparatus, and has been suggested to represent the earliest arboreal tetrapod in the fossil record. Its postcranial anatomy is described in detail for the first time, revealing a large number of autapomorphies for this small herbivore. These include a reduced number of presacral and therein dorsal vertebrae, an elongate neck, a long and possibly prehensile tail, a procoracoid with a notch at its ventromedial margin rather than a foramen, an iliac blade with a robust ridge at its anteromedial edge, a pubis with a puboischiadic fenestra and separate pubic foramen, and elongate limbs. Additional autapomorphic characters are displayed in the autopodium, which comprises about 40% of the entire limb length. These features include an enlarged, phalangiform distal carpal 1 and tarsal 1, a short and robust first metacarpal, a crescent‐shaped distal tarsal 4, and elongate penultimate phalangeal elements. The phylogenetic relationships of basal anomodonts are revisited using an expanded data set, with the addition of key taxa and several postcranial characters. Unlike dicynodonts, Suminia retained the plesiomorphic phalangeal formula for amniotes of 2‐3‐4‐5‐3 (manus) and 2‐3‐4‐5‐4 (pes). This pattern is achieved by the retention of disc‐like phalangeal elements between the proximal and penultimate phalanges in digits III, IV (manus and pes), and V (pes only). In light of the new material, Suminia can be recognized as the most complete basal anomodont, offering new insights into the early evolution of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 661–698.  相似文献   
57.
Synthesis and bioactivity of 2,4-diacyl analogues of paclitaxel   总被引:1,自引:0,他引:1  
The 2,4-diacyl paclitaxel analogues 8a-8r were prepared from paclitaxel by acylation of 4-deacetyl-2-debenzoylpaclitaxel 1,2-carbonate (3) followed either by hydrolysis of the carbonate and acylation or by direct treatment of the carbonate with an aryllithium. Some of the resulting derivatives showed significantly improved tubulin assembly activity and cytotoxicity as compared with paclitaxel; in some cases this improvement was especially significant for paclitaxel-resistant cell lines.  相似文献   
58.
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号