首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   5篇
  54篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1968年   1篇
  1956年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
22.
While degrading 2,4-dichlorophenol, two strains of Gloeophyllum striatum, a basidiomycetous fungus causing brown rot decay of wood, simultaneously produced 4-chlorocatechol and 3,5-dichlorocatechol. These metabolites were identified by comparing high-performance liquid chromatography retention times and mass spectral data with those of chemically synthesized standards. Under similar conditions, 3-hydroxyphthalic hydrazide was generated from phthalic hydrazide, a reaction assumed to indicate hydroxyl radical formation. Accordingly, during chemical degradation of 2,4-dichlorophenol by Fenton's reagent, identical metabolites were formed. Both activities, the conversion of 2,4-[U-14C]dichlorophenol into 14CO2 and the generation of 3-hydroxyphthalic hydrazide, were strongly inhibited by the hydroxyl radical scavenger mannitol and in the absence of iron. These results provide new evidence in favor of a Fenton-type degradation mechanism operative in Gloeophyllum.  相似文献   
23.
This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics of lipophilic drugs after parenteral as well as oral administration.  相似文献   
24.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   
25.
Question: Does the overstorey of pine savannas influence plant species biodiversity in the ground cover? Location: Camp Whispering Pines (30°41’N; 90°29’W), eastern Louisiana (USA). Methods: We used ecologically sensitive restoration logging to remove patches of Pinus palustris (longleaf pine) in a second‐growth loess plain Pinus palustris savanna managed using frequent lightning season fires. Five years later, we measured numbers of vascular plant species and transmitted light in replicated 100‐m2 plots. Treatments involved three different overstorey conditions: no overstorey for 5 years, no overstorey for several decades, and overstorey pines present for decades. Results: Both recent and long‐term openings contained, on average, about 100 vascular plant species per 100 m2, 20% more than in similar‐sized areas beneath overstorey trees. Responses varied with life form; more herbaceous species occurred in recent and older overstorey openings than beneath overstorey trees. Total numbers of all species and of less abundant forb species were positively and linearly related to light transmitted to ground level. Those species responding to openings in the overstorey and positively associated with increased transmitted light levels were monocarpic and shortlived perennial forb and grass species with a seed bank in the soil. In addition, community structure, as reflected in species composition and abundances, appeared to vary with canopy condition. Conclusions: Restoration involving ecologically sensitive removal of patches of overstorey pines in frequently burned pine savannas should benefit the ground cover and increase plant species biodiversity as a result of increased abundance of seed bank species.  相似文献   
26.
27.
The resistance of a lipid bilayer with respect to a bending deformation generally depends on the presence of membrane additives such as sterols, cosurfactants, peptides, and drugs. As a consequence, the partitioning of membrane additives into liposomes becomes selective with respect to liposome size; i.e., membrane rigidification depletes the membrane additives in the smaller (more strongly curved) liposomes. We have measured this liposome size-selective partitioning for two membrane additives - cholesterol and the porphyrin-based photosensitizer temoporfin - using asymmetrical flow field-flow fractionation (AF4) of liposomes and radioactive labeling of the membrane additive and lipid. The method yields either the molar cholesterol-to-lipid or the temoporfin-to-lipid ratio as a function of liposome size, from which we calculate the corresponding change of the membrane bending stiffness. For small unilamellar fluid-phase liposomes composed of palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylglycerol (POPG), we find that cholesterol rigidifies the host membrane in a manner consistent with previously reported measurements. In contrast, temoporfin softens this membrane. Partitioning results for gel-phase liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) are also curvature-sensitive but cannot be interpreted on the basis of the bending stiffness alone.  相似文献   
28.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   
29.
P J Bauer  E Bamberg    A Fahr 《Biophysical journal》1984,46(1):111-116
Purified bovine rod outer segment disk membranes were attached to a lecithin bilayer membrane. After photoexcitation with a 500-nm flash delivered by a dye laser, a negative photovoltage was observed on the bilayer under normal ionic strengths (100 mM KCl), which had a rise phase of 1-3 ms at 20 degrees C. The photoresponse was obviously due to bleaching of rhodopsin as it decreased for successive flashes of light. It originated most probably during the metarhodopsin-I metarhodopsin-II (meta-I-II) transition of rhodopsin because it was pH dependent at 2 degrees C but not at 20 degrees C. At 10 mM KCl, i.e., under hypotonic conditions, a positive photovoltage with slower kinetics than at high salt was observed. As the disk membranes were merely attached to the bilayer membrane, the photovoltage was apparently due to a light-induced transmembrane potential change in the disk membranes. Possible electrogenic mechanisms underlying the photosignal will be discussed.  相似文献   
30.
Iron-containing liquid cultures of the brown-rot basidiomycete Gloeophyllum striatum degraded 2-fluorophenol. Two simultaneously appearing degradation products, 3-fluorocatechol and catechol, were identified by gas chromatography and mass spectrometry (GC-MS). Concomitantly, fluoride was produced at approximately 50% of the amount that theoretically could be achieved upon complete dehalogenation. Defluorination was strongly inhibited in the presence of either the hydroxyl radical scavenger mannitol or superoxide dismutase, as well as in the absence of iron. The addition of the natural iron chelator oxalate caused a clear but less extensive inhibition, whereas supplementation with the artificial iron chelator nitrilotriacetic acid increased fluoride production. Extracellular 2-fluorophenol degradation was evidenced by defluorination, observed upon addition of 2-fluorophenol to cell-free culture supernatants derived from iron-containing fungal cultures. Ultrafiltered culture supernatants oxidized methanol to formaldehyde, known as a product of the reaction of methanol with hydroxyl radical. In addition, G. striatum was found to produce metabolites extractable with ethyl acetate that are capable of reducing Fe3+. GC-MS analysis of such extracts revealed the presence of several compounds. The mass spectrum of a prominent peak matched those previously reported for 2,5-dimethoxyhydroquinone and 4,5-dimethoxycatechol, fungal metabolites implicated to drive hydroxyl radical production in Gloeophyllum. Taken together, these findings further support an extracellular Fenton-type mechanism operative during halophenol degradation by G. striatum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号