首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   7篇
  2022年   1篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
21.

Background  

Effective and stable knockdown of multiple gene targets by RNA interference is often necessary to overcome isoform redundancy, but it remains a technical challenge when working with intractable cell systems.  相似文献   
22.
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.  相似文献   
23.
24.
Initiation and maintenance of virus-induced gene silencing   总被引:29,自引:0,他引:29       下载免费PDF全文
MT Ruiz  O Voinnet    DC Baulcombe 《The Plant cell》1998,10(6):937-946
  相似文献   
25.
The inhibition of the cytosolic isoenzyme BCAT that is expressed specifically in neuronal tissue is likely to be useful for the treatment of neurodegenerative and other neurological disorders where glutamatergic mechanisms are implicated. Compound 2 exhibited an IC50 of 0.8 microM in the hBCATc assays; it is an active and selective inhibitor. Inhibitor 2 also blocked calcium influx into neuronal cells following inhibition of glutamate uptake, and demonstrated neuroprotective efficacy in vivo. SAR, pharmacology, and the crystal structure of hBCATc with inhibitor 2 are described.  相似文献   
26.
Cloning and gene map assignment of the Xiphophorus DNA ligase 1 gene   总被引:1,自引:0,他引:1  
Fishes represent the stem vertebrate condition and have maintained several gene arrangements common to mammalian genomes throughout the 450 Myr of divergence from a common ancestor. One such syntenic arrangement includes the GPI-PEPD enzyme association on Xiphophorus linkage group IV and human chromosome 19. Previously we assigned the Xiphophorus homologue of the human ERCC2 gene to linkage group U5 in tight association with the CKM locus. CKM is also tightly linked to the ERCC2 locus on human chromosome 19, leading to speculation that human chromosome 19 may have arisen by fusion of two ancestral linkage groups which have been maintained in fishes. To investigate this hypothesis further, we isolated and sequenced Xiphophorus fish genomic regions exhibiting considerable sequence similarity to the human DNA ligase 1 amino acid sequence. Comparison of the fish DNA ligase sequence with those of other species suggests several modes of amino acid conservation in this gene. A 2.2-kb restriction fragment containing part of an X. maculatus DNA ligase 1 exon was used in backcross hybrid mapping with 12 enzyme or RFLP loci. Significant linkage was observed between the nucleoside phosphorylase (NP2) and the DNA ligase (LIG1) loci on Xiphophorus linkage group VI. This assignment suggests that the association of four DNA repair-related genes on human chromosome 19 may be the result of chance chromosomal rearrangements.   相似文献   
27.
Abstract Two chronosequences of unsaturated, buried loess sediments, ranging in age from <10,000 years to >1 million years, were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession was inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Core samples were collected at two sites 40 km apart in the Palouse region of eastern Washington State, near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the Winona site elevation is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was approximately 250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: approximately 1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Same-age sediments had equal quantities of microorganisms, but different community types. Differences in community makeup between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the microbial community age can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.  相似文献   
28.
Restriction mapping and sequencing have shown that humans have substantially lower levels of mitochondrial genome diversity (d) than chimpanzees. In contrast, humans have substantially higher levels of heterozygosity (H) at protein-coding loci, suggesting a higher level of diversity in the nuclear genome. To investigate the discrepancy further, we sequenced a segment of the mitochondrial genome control region (CR) from 49 chimpanzees. The majority of these were from the Pan troglodytes versus subspecies, which was underrepresented in previous studies. We also estimated the average heterozygosity at 60 short tandem repeat (STR) loci in both species. For a total sample of 115 chimpanzees, d = 0.075 +/0 0.037, compared to 0.020 +/- 0.011 for a sample of 1,554 humans. The heterozygosity of human STR loci is significantly higher than that of chimpanzees. Thus, the higher level of nuclear genome diversity relative to mitochondrial genome diversity in humans is not restricted to protein-coding loci. It seems that humans, not chimpanzees, have an unusual d/H ratio, since the ratio in chimpanzees is similar to that in other catarrhines. This discrepancy in the relative levels of nuclear and mitochondrial genome diversity in the two species cannot be explained by differences in mutation rate. However, it may result from a combination of factors such as a difference in the extent of sex ratio disparity, the greater effect of population subdivision on mitochondrial than on nuclear genome diversity, a difference in the relative levels of male and female migration among subpopulations, diversifying selection acting to increase variation in the nuclear genome, and/or directional selection acting to reduce variation in the mitochondrial genome.   相似文献   
29.
30.
Endothelin converting enzyme-1 (ECE-1) is a type II integral membrane protein and a zinc metalloendopeptidase. ECE-1 generates endothelin-1 (ET-1), the most potent vasoconstrictor yet discovered, by specific proteolytic processing of a precursor peptide, big ET-1. An insect cell expression system, which generates up to 4.3 mg of a secreted, soluble form of ECE-1 (solECE-1) per liter culture medium, has been established and solECE-1 was purified to homogeneity using five chromatographic steps. SolECE-1 expressed in insect cells could be suitable for X-ray structure determination as it is much less glycosylated than solECE-1 from mammalian cells. SolECE-1 from both sources, nonetheless, has comparable enzymatic properties. Despite apparent structural similarities, ECE-1 cleaves big ET-1 exclusively between Trp(21) and Val(22), in contrast to neprilysin, which cleaves big ET-1 at various sites. However, when linear big ET-1, in which the formation of disulfide bonds has been prevented by alkylation of the four cysteines, was used as substrate, it was cleaved by solECE-1 at multiple sites. This result indicates that secondary/tertiary structure of big ET-1 induced by disulfide bonds is essential for the specific cleavage of the Trp(21)-Val(22) bond by ECE-1. A continuous, fluorescent ECE-1 assay has been developed using a novel substrate, 2-aminobenzoyl-Arg-Pro-Pro-Gly-Phe-Ser-Pro-(p-nitro-Phe(8))-Arg. This simple and rapid assay can greatly facilitate discovery of novel ECE inhibitors useful as pharmaceutical agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号