首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   10篇
  2024年   2篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   9篇
  2013年   4篇
  2012年   12篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有139条查询结果,搜索用时 172 毫秒
81.

Background

Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.

Methods

The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population.

Results

Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.

Conclusion

Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.  相似文献   
82.

Introduction  

Traumatic joint injury damages cartilage and causes adjacent joint tissues to release inflammatory cytokines, increasing the risk of developing osteoarthritis. The main objective of this study was to determine whether the combined catabolic effects of mechanical injury, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6)/soluble IL-6 receptor (sIL-6R) on cartilage could be abolished by short-term treatment with glucocorticoids such as dexamethasone.  相似文献   
83.
It has been well-characterized that the renin-angiotensin system (RAS) physiologically regulates systemic arterial pressure. However, RAS signaling has also been shown to increase cell proliferation during malignancy, and angiotensin receptor blockers (ARBs) are able to decrease pro-survival signaling by inhibiting anti-apoptotic molecules and suppressing caspase activity. In this study, the apoptotic effects of telmisartan, a type of ARB, was evaluated using a non-cancerous human renal cell line (HEK) and a human renal cell carcinoma (RCC) cell line (786). Both types of cells were treated with telmisartan for 4 h, 24 h, and 48 h, and then were assayed for levels of apoptosis, caspase-3, and Bcl-2 using MTT assays, flow cytometry, and immunostaining studies. Analysis of variance was used to identify significant differences between these data (P < 0.05). Following the treatment of 786 cells with 100 µM and 200 µM telmisartan, a marked inhibition of cell proliferation was observed. 50 µM cisplatin also caused high inhibition of these cells. Moreover, these inhibitions were both concentration- and time-dependent (P < 0.05). Various apoptotic effects were also observed compared with control cells at the 24 h and 48 h timepoints assayed (P < 0.001). Furthermore, positive caspase-3 staining and down-regulation of Bcl-2 were detected, consistent with induction of cell death. In contrast, treatment of HEK cells with telmisartan did not produce an apoptotic effect compared with control cells at the 24 h timepoint (P > 0.05). Treatment with cisplatin promoted in HEK cells high index of apoptosis (P < 0.001). Taken together, these results suggest that telmisartan induces apoptosis via down-regulation of Bcl-2 and involvement of caspase-3 in human RCC cells.  相似文献   
84.
Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils.Eosinophils express numerous receptors and secrete a wide variety of inflammatory mediators that influence many innate and adaptive immune responses. These multifunctional cells are important in the defense against helminth infection and are involved in the pathogenesis of many eosinophilic dominant allergic diseases.1 High levels of eosinophil granule proteins (such as major basic protein (MBP)) have been found in bronchoalveolar lavage fluid from patients with asthma and evidence indicates that high-concentration granule products have contributed to the development of airway hyperreactivity (AHR), a cardinal feature of asthma.2 Asthma is an inflammatory disease of the airways with participation of many cell types including leukocytes especially eosinophils and lymphocytes.3, 4 Activation of these cells (mainly lymphocytes) leads to the release of proinflammatory mediators and cytokines such as leukotriene B4, interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-9 (IL-9), interleukin-13 (IL-13) and colony-stimulating factor granulocyte-macrophage (GM-CSF).3, 5, 6, 7 Investigations using preclinical animal models of asthma and clinical studies in patients with asthma have demonstrated that the presence of eosinophils in the lungs are associated with epithelial damage, goblet cell hyperplasia, smooth muscle hypertrophy and airway hyperresponsiveness resulting in airflow limitation which can be fatal.3, 8, 9, 10 Recently, anti-IL-5 treatment has been shown to ameliorate lung function in patients with eosinophilic asthma.11Apoptosis of leukocytes is regarded as an important process for the successful resolution of inflammatory responses. Reduced eosinophil apoptosis in bronchoalveolar lavage (BAL) fluid has been shown to correlate positively with severity of asthma.3, 12, 13, 14 Indeed, defective leukocyte apoptosis and subsequent removal of apoptotic cells by phagocytes is thought to be important for the initiation and propagation of chronic inflammatory diseases such as asthma.15 Therefore, a balance in the tissue microenvironment between pro- and antiapoptotic signals is likely to greatly influence the load of eosinophils in the asthmatic lung.16 Thus, there is a great interest in understanding the mechanisms responsible for the elimination of eosinophils and other leukocytes and inactivation of proinflammatory mediators in inflammatory sites.17Several molecular pathways have been shown to modulate the survival and death of leukocytes at sites of inflammation, including reactive oxygen species (ROS).18 ROS are a family of molecules containing oxygen and includes hydrogen peroxide (H2O2), superoxide O2, hydroxyl radical (OH) and nitric oxide (NO).19 In inflammatory conditions, ROS are increased as they help in neutralizing invading organisms during infection either directly or indirectly by formation of extracellular traps (ETs).20 ROS have traditionally been regarded as quintessentially proinflammatory. However, evidence for ROS-mediated anti-inflammatory actions has been described.21 The importance for ROS production in the context of infection can be exemplified in patients with chronic granulomatous disease (CGD) where defective production in ROS results in multiple infections and often early death.22, 23 Furthermore, studies in mouse models have shown that NADPH oxidase is key for regulating lung inflammation and injury as well as NF-κB activation and downstream cytokine production in response to LPS.24 More recently, our group has demonstrated that NADPH oxidase-derived H2O2 is directly linked to induction of apoptosis of neutrophils and resolution of inflammation in a model of antigen-induced arthritis.18 However, the role of ROS in the context of the resolution of allergic inflammation is still unknown.Here, we evaluated whether H2O2 drives apoptosis of eosinophils and thereby influences the resolution of established eosinophilic inflammation and reduction of airflow obstruction. Our study provides evidence that H2O2 is released during allergic inflammation in a gp91phox−/−-dependent manner and induces a caspase-dependent proapoptotic effect in eosinophils, thus having a crucial role in the resolution of allergic inflammation.  相似文献   
85.
Abstract Oak gallwasps (Hymenoptera; Cynipidae, tribe Cynipini) are cyclically parthenogenetic insects that induce galls on specific plant hosts in the family Fagaceae. Understanding the processes underlying the evolution of specific oak associations requires knowledge of the phylogenetic relationships among oak gallwasp genera. Although three major lineages of oak gallwasps have been identified, the status and relationships of several species‐poor but biologically significant genera remain unresolved. Two such genera are Chilaspis and Dryocosmus, whose western palaearctic species all gall oaks in the section Cerris. Dryocosmus is particularly significant biologically because it includes: (a) the only palaearctic gallwasp to gall chestnuts, Castanea, and (b) nearctic species. The oak section Cerris is wholly absent from the nearctic, and the relationship between palaearctic and nearctic Dryocosmus is significant for patterns of host plant evolution in the tribe as a whole. We examined the relationships between Chilaspis, Dryocosmus and other oak cynipid genera using cladograms from sequence data for two mitochondrial loci (cytochrome c oxidase subunit I and cytochrome b) and two nuclear loci (the 28S ribosomal gene regions D2 and D3–5). Our analyses support the following conclusions: (1) palaearctic Chilaspis and Dryocosmus species form an intermingled monophyletic group. (2) We propose that Chilaspis Mayr, 1881 is a syn.n. of Dryocosmus Giraud, 1859 and propose the name D. mayri as a comb.rev. for the species previously named C. mayri, and D. nitidus and D. israeli as comb.n. of C. nitida and C. israeli, respectively. (3) We reassess the utility of morphological characters previously regarded as diagnostic for these genera. (4) Two species previously known only from a single generation represent two halves of a single species lifecycle. Dryocosmus nervosus is here designated a syn.n. of D. cerriphilus. (5) The nearctic species D. favus lies outside the palaearctic Chilaspis/Dryocosmus clade, and Dryocosmus as currently recognized is not a monophyletic group. (6) Dryocosmus/Chilaspis is closely related to the other oak gallwasp taxa (Aphelonyx, Plagiotrochus, Pseudoneuroterus, Trichagalma, and some Neuroterus species) galling section Cerris oaks. This implies an early branching evolution of this oak association within this group, and supports previous work showing the rarity of oak gallwasp host shifts.  相似文献   
86.
IntroductionPrevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence.MethodsProtein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA.ResultsFor subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed that the induction of pro-inflammatory cytokines by TLR ligands (R837, ssRNA and ODN2395) was greatly impaired in CaSki and HeLa than C33A cells.ConclusionsIn conclusion, prednisolone and TLR antagonist (hydroxychloroquine) may down-regulate protein levels of TLR7 and TLR9 in lupus patients, thereby decreasing the innate immune response against HPV infection. Upon infection, HPV further down-regulate TLR7 and 9 levels for viral persistence. Furthermore, reduction of nucleic acid-sensing TLRs 7, 8 and 9 in carcinogenic HPVs ensures that the expression of inducible pro-inflammatory cytokines is minimized to prevent the expression of antiviral ISGs (ISG15 and Mx-1) on a biologically relevant antiviral response.  相似文献   
87.
Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.  相似文献   
88.
The murine mouse lymphoblastic lymphoma cell line (EL4) tumor model is an established in vivo apoptosis model for the investigation of novel cancer imaging agents and immunological treatments due to the rapid and significant response of the EL4 tumors to cyclophosphamide and etoposide combination chemotherapy. Despite the utility of this model system in cancer research, little is known regarding the molecular details of in vivo tumor cell death. Here, we report the first in‐depth quantitative proteomic analysis of the changes that occur in these tumors upon cyclophosphamide and etoposide treatment in vivo. Using a label‐free quantitative proteomic approach a total of 5838 proteins were identified in the treated and untreated tumors, of which 875 were determined to change in abundance with statistical significance. Initial analysis of the data reveals changes that may have been predicted, such as the downregulation of ribosomes, but demonstrates the robustness of the dataset. Analysis of the dataset also reveals the unexpected downregulation of caspase‐3 and an upregulation of caspase‐6 in addition to a global upregulation of lysosomal proteins in the bulk of the tumor.  相似文献   
89.
King penguins (Aptenodytes patagonicus) may fast for up to 30 days during their breeding period. As such extended fasting may affect the relationship between the rate of O(2) consumption (Vo(2)) and heart rate (f(H)), five male king penguins were exercised at various speeds on repeated occasions during a fasting period of 24-31 days. In addition, Vo(2) and f(H) were measured in the same animals during rest in cold air and water (4 degrees C). Vo(2) and f(H) at rest and Vo(2) during exercise decreased with fasting. There was a significant relation between Vo(2) and f(H) (r(2) = 0.56) that was improved by including speed, body mass (M(b)), number of days fasting (t), and a cross term between f(H) and t (r(2) = 0.92). It was concluded that there was a significant change in the Vo(2)-f(H) relationship with fasting during exercise. As t is measurable in the field and was shown to be significant and, therefore, a practical covariate, a regression equation for use when birds are ashore was obtained by removing speed and M(b). When this equation was used, predicted Vo(2) was in good agreement with the observed data, with an overall error of 3.0%. There was no change in the Vo(2)-f(H) relationship in penguins at rest in water.  相似文献   
90.

Background  

Cancer of the oral tongue is the second most common cancer among males in various parts of India. Despite advances in diagnosis and treatment the failure rates in cancer of the oral tongue are high and survival poor. Majority of these failures occur in untreated neck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号