首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
  国内免费   1篇
  2023年   3篇
  2022年   6篇
  2021年   5篇
  2020年   6篇
  2019年   16篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   6篇
  2014年   6篇
  2013年   15篇
  2012年   7篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  1997年   1篇
  1979年   1篇
排序方式: 共有118条查询结果,搜索用时 126 毫秒
51.
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated.  相似文献   
52.
53.
Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.  相似文献   
54.
International Journal of Peptide Research and Therapeutics - Fetal alcohol Spectrum Disorder (FASD) describes the range of detrimental impacts which are likely to occur in children who are born to...  相似文献   
55.
Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC7F3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)–CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.  相似文献   
56.
The current study examines the protective effect of oxytocin (OT) on cardiomyocyte apoptosis modulated by mitochondrial ATP-dependent potassium (mitoKATP) channel and permeability transition pore (mPTP) in the preconditioned myocardium of anesthetized rats. Eighty rats were equally divided into eight groups. The hearts of all animals except for the sham group were subjected to 25 min ischemia and 120 min reperfusion. Oxytocin, 5-hydroxydeconoate (5-HD), a specific inhibitor of the mitoKATP channel, and atractyloside (ATRC), an mPTP opener, were used prior to ischemia. Hemodynamic parameters were recorded throughout the experiment. Evaluations were made by infarct size, plasma lactate dehydrogenase level (LDH), transmission electron microscopy (TEM) and immunohistochemistry studies. OT prevented mean arterial pressure drop during early phase of ischemia and reperfusion. Treatment with OT before IR induction normalizes cardiomyocytes both in light microscopy and TEM observations. In addition, OT significantly reduced TUNEL- and increased Bcl-2-labeled positive cell number relative to IR (p<0.05). However, 5HD or ATRC inhibited the protective effects of OT on cardiomyocytes damaged by IR (p<0.05). Ultrastructural changes including extensive myofibril loss, sarcolemmal disruption and mitochondrial swelling due to amorphous dens bodies indicate necrosis induction in 5HD and ATRC as well as in IR groups. Restoration of immunohistochemistry parameters and protection against IR-induced ultrastructural changes confirm OT cardioprotective effects via mitoKATP channel and mPTP modulation in apoptosis induced by ischemia-reperfusion.  相似文献   
57.
Cytotoxic small-molecule drugs have a major influence on the fate of antibody–drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.  相似文献   
58.
59.

Objectives

To investigate the effect of AdipoRon on major factors involved in survival, migration and neovascularization of rat bone marrow-derived mesenchymal stem cells.

Results

AdipoRon promoted the MSCs viability. Real-time PCR indicated that the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1) C-X-C chemokine receptor type 4 (CXCR4), C–C chemokine receptor type 2 (CCR2), vascular endothelial growth factor matrix metalloproteinase-2 (MMP-2) and MMP-9 were upregulated in AdipoRon-treated MSCs compared to control groups. Prostaglandin E2 (PGE2) level, as well as migration ability of MSCs (scratch assay) was enhanced by AdipoRon preconditioning.

Conclusion

Preconditioning of MSCs with AdipoRon prior to transplantation could enhance cell survival, angiogenesis and migration via activating the COX-2/PGE2/HIF-1 pathway and other contributing factors.
  相似文献   
60.
The study tests the physiological responses of Persian sturgeon, Acipenser persicus, during the abrupt release of juveniles from freshwater (FW) into brackish waters (BW = 11‰) of the Caspian Sea. Fish weight at release was 2‐3 g (2.55 ± 0.41 g; 8.8 ± 0.58 cm TL). Totals of 160 individuals were randomly distributed into four fiber‐glass aerated tanks (volume 60‐L). Two tanks served as controls (FW groups), and two as exposure tanks for BW (Caspian Sea water = CSW). Fish were sampled at 0, 3, 6, 12, 24, 48 and 96 hr after abrupt transfer to CSW. Plasma osmolality, immunolocalization of Na+, K+ ‐ATPase (NKA) and Na+/K+/2Cl (NKCC) Co‐transporter, NKA activity and the NKA α‐subunit mRNA expression were analyzed. Blood osmolality of fish transferred from FW to CSW increased significantly within hours post‐transfer (p < .05) and remained at a high level for up to 96 hr. Immunolocalization of NKCC indicated co‐localization with NKA in the chloride cells in the gill epithelium. A partial sequence of the NKA α‐subunit (632 bp) is described. Its expression levels were up‐regulated at 12 and 48 hr following salinity transfer (p < .05). However, NKA activity sharply increased in CSW specimens by almost 2.8‐fold (p < .05) between 48 and 96 hr after transfer. Gill NKCC co‐transporter abundance increased, coinciding with increased gill NKA activity. The increased activity of NKCC during salt excretion in CSW may lead to an influx of Na+ into the chloride cells. Consequently, NKA activity increases to maintain intracellular Na+ homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号