首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   11篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
81.
Grain protein content (GPC) is important for human nutrition and has a strong influence on pasta and bread quality. A quantitative trait locus, derived from a Triticum turgidum ssp. dicoccoides accession (DIC), with an average increase in GPC of 14 g kg(-1) was mapped on chromosome 6BS. Using the wheat-rice colinearity, a high-density map of the wheat region was developed and the quantitative trait locus was mapped as a simple Mendelian locus designated Gpc-B1. A physical map of approx. 250 kb of the Gpc-B1 region was developed using a tetraploid wheat bacterial artificial chromosome library. The constructed physical map included the two Gpc-B1 flanking markers and one potential candidate gene from the colinear rice region completely linked to Gpc-B1. The relationship between physical and genetic distances and the feasibility of isolating genes by positional cloning in wheat are discussed. A high-throughput codominant marker, Xuhw89, was developed. A 4-bp deletion present in the DIC allele was absent in a collection of 117 cultivated tetraploid and hexaploid wheat germplasm, suggesting that this marker will be useful to incorporate the high GPC allele from the DIC accession studied here into commercial wheat varieties.  相似文献   
82.
Singh A  Dilnawaz F  Sahoo SK 《PloS one》2011,6(11):e26803
Amongst all leukemias, Bcr-Abl positive chronic myelogenous leukemia (CML) confers resistance to native drug due to multi drug resistance and also resistance to p53 and fas ligand pathways. In the present study, we have investigated the efficacy of microtubule stabilizing paclitaxel loaded magnetic nanoparticles (pac-MNPs) to ascertain its cytotoxic effect on Bcr-Abl positive K562 cells. For active targeted therapy, pac-MNPs were functionalized with lectin glycoprotein which resulted in higher cellular uptake and lower IC(50) value suggesting the efficacy of targeted delivery of paclitaxel. Both pac-MNPs and lectin conjugated pac-MNPs have a prolonged circulation time in serum suggesting increased bioavailability and therapeutics index of paclitaxel in vivo. Further, the molecular mechanism pertaining to pac-induced cytotoxicity was analyzed by studying the involvement of different apoptotic pathway proteins by immunoblotting and quantitative PCR. Our study revealed simultaneous activation of JNK pathway leading to Bcr-Abl instability and the extrinsic apoptotic pathway after pac-MNPs treatment in two Bcr-Abl positive cell lines. In addition, the MRI data suggested the potential application of MNPs as imaging agent. Thus our in vitro and in vivo results strongly suggested the pac-MNPs as a future prospective theranostic tool for leukemia therapy.  相似文献   
83.
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.  相似文献   
84.
85.
Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra‐dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat , can be considered as a guide for accelerated dissection of major agronomical traits in wheat.  相似文献   
86.
T Fahima  Y Wu  L Zhang    N K Van Alfen 《Journal of virology》1994,68(9):6116-6119
Hypovirulence of the pathogenic fungus Cryphonectria parasitica, caused by the unencapsidated viral double-stranded RNA of Cryphonectria hypovirus (CHV1), provides a means for biological control of chestnut blight. We report here the isolation of a replication complex of the virus solubilized from host membranes. The conserved regions of the putative RNA polymerase encoded by strain CHV1-713 were cloned and expressed, and the recombinant protein was purified and used to produce polyclonal antibodies. The CHV1 replication complex was solubilized from a membrane fraction of CHV1-infected C. parasitica hyphae. Antibodies raised against the putative viral polymerase reacted on a Western immunoblot with an 87-kDa polypeptide of the replication complex but not with comparable preparations from an isogenic uninfected strain. Analysis of the polypeptide composition of the complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining revealed a number of other polypeptides along with the double-stranded RNA of the virus. We conclude that this 87-kDa polypeptide is the putative RNA polymerase encoded on open reading frame B of CHV1.  相似文献   
87.
Photochemical response to drought acclimation in two sunflower genotypes   总被引:2,自引:0,他引:2  
The effects of drought acclimation on CO2 assimilation and light utilization were investigated in two sunflower genotypes ( Helianthus annuus L., T32 and Viki) in relation to water deficit and/or high light conditions. Drought interaction with PSII efficiency was observed in the genotype T32 with a sustained decrease in the potential photochemical efficiency of PSII, Fn/Fm. In response to drought acclimation, T32 displayed some tendency to accumulate closed PSII traps (higher value of 1-qp) without an enhancement of thermal deactivation (Stem-Volmer non-photochemical quenching, NPQ). Irrespective of the growth conditions (growth chamber or greenhouse), only Viki was responsive to drought acclimation, with (1) increased net photosynthesis in well-watered plants, (2) higher maintenance of photochemical electron transfer under water deficit and/or high light, (3) limited PSII inactivation (lower value of 1-qp) through increased non-photochemical energy dissipation (Stern-Volmer NPQ) which was readily reversible even at low leaf water potentials, and (4) higher Fv/Fm recovery after high light treatment. Additionally, drought acclimation delayed turgor loss during subsequent water stress in Viki. Thus, the response to drought acclimation, with an adjustment of water relations and of energy utilization by PSII, was observed under both growth conditions and was mainly genotype dependent.  相似文献   
88.
The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP''s ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.  相似文献   
89.
Twenty eight microsatellite markers were used to analyze genetic divergence in tandem dinucleotide repeated DNA regions between two edaphic subpopulations of Triticum dicoccoides growing on the contrasting terra rossa and basalt soilsfrom a microsite at Tabigha, north of the Sea of Galilee, Israel. The terra rossa soil niche was drier and more stressful than the basalt throughout the growing season (November to May). Significant microsatellite divergence in allele distribution, repeat length, genetic diversity, and linkage disequilibria were found between emmer wheat from the two soil types over two short transects of 100 m each. Soil-specific and -unique alleles and linkage disequilibria were observed in the terra rossa and basalt subpopulations. A permutation test showed that the effects of random genetic drift were very low for the significant genetic diversity at microsatellite loci between the two subpopulations, suggesting that an adaptive molecular pattern derived by edaphic selection may act upon variation of the microsatellites. Received: 4 February 2000 / Accepted: 31 March 2000<@head-com-p1a.lf>Communicated by H.F. Linskens  相似文献   
90.
 Genetic diversity in random amplified polymorphic DNAs (RAPDs) was studied in 110 genotypes of the tetraploid wild progenitor of wheat, Triticum dicoccoides, from 11 populations sampled in Israel and Turkey. Our results show high level of diversity of RAPD markers in wild wheat populations in Israel. The ten primers used in this study amplified 59 scorable RAPD loci of which 48 (81.4%) were polymorphic and 11 monomorphic. RAPD analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides originating from diverse ecogeographical sites in Israel and Turkey, with 95.5% of the 100 genotypes correctly classified into sites of origin by discriminant analysis based on RAPD genotyping. However, interpopulation genetic distances showed no association with geographic distance between the population sites of origin, negating a simple isolation by distance model. Spatial autocorrelation of RAPD frequencies suggests that migration is not influential. Our present RAPD results are non-random and in agreement with the previously obtained allozyme patterns, although the genetic diversity values obtained with RAPDs are much higher than the allozyme values. Significant correlates of RAPD markers with various climatic and soil factors suggest that, as in the case of allozymes, natural selection causes adaptive RAPD ecogeographical differentiation. The results obtained suggest that RAPD markers are useful for the estimation of genetic diversity in wild material of T. dicoccoides and the identification of suitable parents for the development of mapping populations for the tagging of agronomically important traits derived from T. dicoccoides. Received: 13 July 1998 / Accepted: 13 August 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号