首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1349篇
  免费   99篇
  国内免费   3篇
  2023年   14篇
  2022年   33篇
  2021年   58篇
  2020年   49篇
  2019年   47篇
  2018年   56篇
  2017年   41篇
  2016年   53篇
  2015年   76篇
  2014年   83篇
  2013年   95篇
  2012年   96篇
  2011年   107篇
  2010年   53篇
  2009年   41篇
  2008年   50篇
  2007年   44篇
  2006年   43篇
  2005年   42篇
  2004年   40篇
  2003年   26篇
  2002年   32篇
  2001年   16篇
  2000年   15篇
  1999年   16篇
  1997年   5篇
  1996年   7篇
  1995年   10篇
  1994年   8篇
  1992年   10篇
  1991年   9篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   13篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   9篇
  1979年   10篇
  1978年   11篇
  1976年   9篇
  1975年   8篇
  1974年   11篇
  1973年   5篇
  1972年   6篇
  1969年   4篇
  1967年   5篇
  1965年   5篇
排序方式: 共有1451条查询结果,搜索用时 687 毫秒
91.
Vinpocetine is a widely used drug for the treatment of cerebrovascular and memory disorders. This study aimed to investigate the effect of vinpocetine on the acute hepatic injury caused in the rat by the administration of CCl4 in vivo. Vinpocetine (2.1, 4.2, 8.4 mg/kg) or silymarin (30 mg/kg) was given once daily orally simultaneously with CCl4 and for 15 days thereafter. Liver damage was assessed by determining serum enzyme activities and hepatic histopathology. Stained sections were subjected to morphometric evaluation using computerized image analyzer. The results showed that vinpocetine administered to CCl4-treated rats decreased the elevated alanine aminotransferase (ALT) by 49.3, 58.1 and 63.6%, aspartate aminotransferase (AST) by 10.5, 22.6 and 27.2% and alkaline phosphatase (ALP) by 52.5, 59.6 and 64.9%, respectively, and in a dose-dependent manner. Meanwhile, silymarin reduced elevated ALT, AST and ALP levels by 53.1, 26.9 and 66%, respectively. Histological examination of liver specimens revealed a marked reduction in liver cell necrosis in vinpocetine and silymarin-treated rats compared with vehicle-treated CCl4-treated rats. Quantitative analysis of the area of damage showed 85.3% reduction in the area of damage after silymarin and 72.2, 78.9 and 82.6% reduction after vinpocetine treatment at 2.1, 4.2, 8.4 mg/kg, respectively. It is concluded that administration of vinpocetine in a model of CCl4-induced liver injury in rats reduced liver damage. The reduction obtained by 4.2 mg/kg of vinpocetine was similar to that obtained by 30 mg/kg silymarin. Therefore, it is suggested that vinpocetine might be a good pharmacological agent in the treatment of liver disease besides its neuroprotective effects.  相似文献   
92.
Trichinella spiralis infection causes hyperexcitability in enteric after-hyperpolarising (AH) sensory neurons that is mimicked by neural, immune or inflammatory mediators known to stimulate adenylyl cyclase (AC)/cyclic 3',5'-adenosine monophosphate (cAMP) signaling. The hypothesis was tested that ongoing modulation and sustained amplification in the AC/cAMP/phosphorylated cAMP related element binding protrein (pCREB) signaling pathway contributes to hyperexcitability and neuronal plasticity in gut sensory neurons after nematode infection. Electrophysiological, immunological, molecular biological or immunochemical studies were done in T. spiralis-infected guinea-pigs (8000 larvae or saline) after acute-inflammation (7 days) or 35 days p.i., after intestinal clearance. Acute-inflammation caused AH-cell hyperexcitability and elevated mucosal and neural tissue levels of myeloperoxidase, mast cell tryptase, prostaglandin E2, leukotrine B4, lipid peroxidation, nitric oxide and gelatinase; lower level inflammation persisted 35 days p.i. Acute exposure to blockers of AC, histamine, cyclooxygenase or leukotriene pathways suppressed AH-cell hyperexcitability in a reversible manner. Basal cAMP responses or those evoked by forskolin (FSK), Ro-20-1724, histamine or substance P in isolated myenteric ganglia were augmented after T. spiralis infection; up-regulation also occurred in AC expression and AC-immunoreactivity in calbindin (AH) neurons. The cAMP-dependent slow excitatory synaptic transmission-like responses to histamine (mast cell mediator) or substance P (neurotransmitter) acting via G-protein coupled receptors (GPCR) in AH neurons were augmented by up to 2.5-fold after T. spiralis infection. FSK, histamine, substance P or T. spiralis acute infection caused a 5- to 30-fold increase in cAMP-dependent nuclear CREB phosphorylation in isolated ganglia or calbindin (AH) neurons. AC and CREB phosphorylation remained elevated 35 days p.i.. Ongoing immune activation, AC up-regulation, enhanced phosphodiesterase IV activity and facilitation of the GPCR-AC/cAMP/pCREB signaling pathway contributes to T. spiralis-induced neuronal plasticity and AH-cell hyperexcitability. This may be relevant in gut nematode infections and inflammatory bowel diseases, and is a potential therapeutic target.  相似文献   
93.
OBJECTIVE: The aim of this study was to evaluate the plasma levels of the adrenomedullin (ADM) and atrial natriuretic peptide (ANP) in adult and pediatric patients with congestive heart failure (CHF) of various etiologies and to investigate their relations with haemodynamic variables e.g. echocardiographic left ventricular ejection fraction (LVEF) and fractional shortening (FS). SUBJECTS AND METHODS: The study was made in 38 adult and 21 pediatric patients with CHF of various etiologies and compared with 15 adult and 10 pediatric normal healthy controls. Patients with CHF were classified according to the New York Heart Association (NYHA) functional classification into grades II to IV in adult patients and into grade IV in all pediatric patients. ADM and ANP plasma levels were determined prior to the treatment with enzyme immunoassay. RESULTS: A statistically significant difference in the plasma levels of ADM and ANP were found between pediatrics and adult patients and corresponding healthy controls. Their levels were progressively increased with severity of NYHA class in adult patients. We found a significant positive correlation between plasma levels of each of ADM and ANP and pulse rate, systolic and diastolic blood pressure; and a significant negative correlation between their plasma levels and echocardiographic LVEF and FS. A significant positive correlation between plasma levels of ADM and ANP in both pediatrics and adult patients were also found. CONCLUSION: Plasma levels of ADM and ANP increased in adult and pediatric patients with CHF irrespective of the cause. They were positively correlated with each other and negatively correlated with LVEF and FS. These findings might have important clinical implications in that a noninvasive blood test may be used to identify high-risk subjects for HF for more invasive procedures.  相似文献   
94.
A new class of lipids, containing the closo-dodecaborate cluster, has been synthesized. Two lipids, S-(N, N-(2-dimyristoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N, N-(2-dipalmitoyloxyethyl)acetamido)thioundecahydro-closo-dodecaborate (2-) (B-6-16) are described. Both of them have a double-tailed lipophilic part and a headgroup carrying two negative charges. Differential scanning calorimetry shows that B-6-14 and B-6-16 bilayers have main phase transition temperatures of 18.8 and 37.9 degrees C, respectively. Above the transition temperature of 18.8 degrees C, B-6-14 can form liposomal vesicles, representing the first boron-containing lipid with this capability. Upon cooling below the transition temperature, stiff bilayers are formed. When incorporated into liposomal formulations with equimolar amounts of distearoyl phosphatidylcholine (DSPC) and cholesterol, stable liposomes are obtained. The zeta-potential measurements indicate that both B-6-14- and B-6-16-containing vesicles are negatively charged, with the most negative potential described of any liposome so far. The liposomes are of high potential value as transporters of boron to tumor cells in treatments based on boron neutron capture therapy (BNCT). Liposomes prepared from B-6-14 were slightly less toxic in V79 Chinese hamster cells (IC50 5.6 mM) than unformulated Na2B12H11SH (IC50 3.9 mM), while liposomes prepared from B-6-16 were not toxic even at 30 mM.  相似文献   
95.
96.

Background

The incidence of Hypertension as a major cardiovascular threat is increasing. The best known diet for hypertensives is 'no added salt diet'. In this study we evaluated the effect of 'no added salt diet' on a hypertensive population with high dietary sodium intake by measuring 24 hour urinary sodium excretion.

Methods

In this single center randomized study 80 patients (60 cases and 20 controls) not on any drug therapy for hypertension with mild to moderate hypertension were enrolled. 24 hour holter monitoring of BP and 24 hour urinary sodium excretion were measured before and after 6 weeks of 'no added salt diet'.

Results

There was no statistically significant difference between age, weight, sex, Hyperlipidemia, family history of hypertension, mean systolic and diastolic BP during the day and at night and mean urinary sodium excretion in 24 hour urine of case and control groups. Seventy eight percent of all patients had moderate to high salt intake. After 6 week of 'no added salt diet' systolic and diastolic BP significantly decreased during the day (mean decrease: 12.1/6.8 mmhg) and at night (mean decrease: 11.1/5.9 mmhg) which is statistically significant in comparison to control group (P 0.001 and 0.01). Urinary sodium excretion of 24 hour urine decreased by 37.1 meq/d ± 39,67 mg/dl in case group which is statistically significant in comparison to control group (p: 0.001). Only 36% of the patients, after no added salt diet, reached the pretreatment goal of 24 hour urinary sodium excretion of below 100 meq/dl (P:0.001).

Conclusion

Despite modest effect on dietary sodium restriction, no added salt diet significantly decreased systolic and diastolic BP and so it should be advised to every hypertensive patient.

Trial Registration

Clinicaltrial.govnumber NCT00491881  相似文献   
97.
Biotechnology Letters - The degradation activity of two bacteriophages UPMK_1 and UPMK_2 against methicillin-resistant Staphylococcus aureus phages were examined using gel...  相似文献   
98.
Journal of Plant Growth Regulation - Under the present era of changing climate, plants face simultaneous abiotic pressures rather than single stress. Under these unprecedented and joint...  相似文献   
99.
BioMetals - A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where...  相似文献   
100.
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX.Plants are frequently exposed to different abiotic stresses, including high light (HL), UV irradiation, heat, cold, and drought. A component common to these stresses is the rapid formation of reactive oxygen species (ROS) as the result of metabolic dysbalances. A major ROS produced under moderate light (ML) and, in particular, HL photooxidative stress conditions was shown to be singlet oxygen, 1O2, that is produced in illuminated chloroplasts predominantly at the PSII (Triantaphylidès et al., 2008). Most of the singlet oxygen is quenched by carotenoids and tocopherols or reacts with galactolipids in thylakoid membranes, yielding galactolipid hydroperoxides (Zoeller et al., 2012; Farmer and Mueller, 2013). In addition, superoxide radicals, O2·, are produced predominantly at the PSI and rapidly dismutate to hydrogen peroxide (H2O2) either spontaneously or because of being catalyzed by superoxide dismutase. Hence, lipid peroxides and H2O2 are produced close to the photosystems and may damage thylakoid proteins. In this context, 2-Cys peroxiredoxin (PRX) enzymes have been implicated in the reductive detoxification of lipid peroxides and H2O2 (König et al., 2002).During photosynthesis, light energy absorbed by PSII is used to split water molecules, and the electrons are channeled from PSII through PSI to ferredoxin (Fd). As a result, electrons flow from water to Fd. The main electron sink reaction is the Fd NADP oxidoreductase-catalyzed production of NADPH that functions as an electron donor to reduce carbon dioxide to sugars. Under HL conditions, excessive excitation energy is dissipated into heat, which was indicated by nonphotochemical quenching of chlorophyll fluorescence. In addition, excessive photosynthetic electrons can be donated from PSI to O2, yielding O2· (Miyake, 2010). This process, the Mehler reaction, creates an alternative electron sink and electron flow. Superoxide anion radicals, O2·, can be dismutated to O2 and H2O2 by a thylakoid-attached copper/zinc superoxide dismutase (Cu/ZnSOD; Rizhsky et al., 2003). H2O2 can then be reduced to water by peroxidases. As a result, O2 molecules originating from the water-splitting process at PSII are reduced to water by electrons originating from PSI. This process is termed the water-water cycle (WWC) that is thought to protect the photosynthetic apparatus from excessive light and alleviate photoinhibition.In the classical WWC, the Mehler-ascorbate peroxidase (MAP) pathway, ascorbate peroxidases (APXs) have been considered as key enzymes in the reductive detoxification of H2O2 in chloroplasts (Kangasjärvi et al., 2008). APXs reduce H2O2 to water and oxidize ascorbate to monodehydroascorbate radicals. NADPH functions as an electron donor to regenerate ascorbate by monodehydroascorbate radical reductase. There are two functional APX homologs in plastids: a 33-kD stromal ascorbate peroxidase (sAPX) and a 38-kD thylakoid ascorbate peroxidase (tAPX). The latter tAPX is thought to reside close to the site of H2O2 generation at PSI. Surprisingly, knockout-tAPX mutants as well as double mutants lacking both the tAPX and the sAPX exhibited no visible symptoms of stress after long-term (1–14 d) HL (1.000 µmol photons m−2 s−1) exposure (Giacomelli et al., 2007; Kangasjärvi et al., 2008; Maruta et al., 2010). Moreover, the photosynthetic efficiency of PSII (as judged by the maximum photochemical efficiency of PSII in the dark-adapted state [Fv/Fm]), H2O2 production, antioxidant levels (ascorbate, glutathione, and tocopherols), protein oxidation, and anthocyanin accumulation were similar between light-stressed mutant and wild-type plants. Hence, other H2O2 detoxification mechanisms can efficiently compensate for the lack of the sAPX and tAPX detoxification system.In addition to APX, glutathione peroxidases and PRXs may reduce H2O2 to water. It has been postulated that, in the chloroplast, two highly homologous thylakoid-associated 2-Cys peroxiredoxins (2CPs), 2CPA and 2CPB, can create an alternative ascorbate-independent WWC (Dietz et al., 2006). In support of this concept, HL stress-acclimated tapx sapx double-mutant plants showed increased levels of 2-Cys PRX compared with wild-type plants (Kangasjärvi et al., 2008). Because the two plastidial 2CPA and 2CPB dynamically interact with the stromal side of thylakoid membranes and are capable of reducing peroxides, 2-Cys PRX enzymes may be involved in both H2O2 detoxification and reduction of lipid peroxides in thylakoids (König et al., 2002).The reaction mechanism of 2-Cys PRX is highly conserved and involves a Cys residue, which becomes transiently oxidized to sulphenic acid (termed the peroxidatic Cys residue), thereby reducing H2O2 to water. The sulphenic acid is subsequently attacked by a second Cys residue, termed resolving Cys residue, yielding an intermolecular disulfide bridge and water (Dietz, 2011).At high peroxide concentrations, the peroxidase function of 2-Cys PRX becomes inactivated through overoxidation, and excess H2O2 may function as a redox signal (Puerto-Galán et al., 2013). It has been postulated that 2-Cys PRXs function as a floodgate that allows H2O2 signaling only under oxidative stress conditions (Wood et al., 2003; Dietz, 2011; Puerto-Galán et al., 2013). In addition to its function as peroxidase, 2-Cys PRX may also serve as proximity-based thiol oxidases and chaperones (König et al., 2013).The genome of Arabidopsis (Arabidopsis thaliana) contains two 2CP genes. To study 2-Cys PRX function, transgenic plants with reduced 2-Cys PRX levels were generated by antisense suppression (Baier et al., 2000) as well as crossing of transfer DNA (T-DNA) insertion mutants (Pulido et al., 2010). The T-DNA insertion double mutant was shown to contain less than 5% of the wild-type content of 2CPA and no 2CPB. Hence, full knockout lines lacking both 2-Cys PRXs have not yet been established. Under standard growth conditions, 2-Cys PRX double mutants (similar to plastid APX-deficient plants) also did not show a photooxidative stress phenotype that might be because of compensation by alternative H2O2 reduction systems (Pulido et al., 2010). Because of the lack of a clear phenotype of the 2-Cys PRX double-knockdown mutant under ML conditions, the physiological functions of 2CPA and 2CPB remain to be elucidated.The main aim of this study was to identify the physiological function of 2CPA and 2CPB under HL stress conditions, when the WWC is of particular importance in protecting the photosynthetic apparatus from photooxidative damage. We investigated mutants completely deficient in 2-Cys PRX (2cpa 2cpb) or tAPX (tapx) and in addition, 2cpa 2cpb tapx triple knockout plants to study the extent of the functional overlap between these enzymes. Results suggest that 2-Cys PRXs are involved in a 2-Cys PRX-dependent WWC that seems to be more important in protecting the photosynthetic apparatus than the tAPX-dependent WWC, the MAP cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号