首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1530篇
  免费   111篇
  2023年   4篇
  2022年   19篇
  2021年   34篇
  2020年   24篇
  2019年   26篇
  2018年   40篇
  2017年   33篇
  2016年   47篇
  2015年   81篇
  2014年   87篇
  2013年   131篇
  2012年   130篇
  2011年   115篇
  2010年   92篇
  2009年   70篇
  2008年   121篇
  2007年   86篇
  2006年   90篇
  2005年   84篇
  2004年   59篇
  2003年   67篇
  2002年   52篇
  2001年   9篇
  2000年   7篇
  1999年   12篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   8篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1970年   1篇
  1965年   1篇
排序方式: 共有1641条查询结果,搜索用时 15 毫秒
981.
The DNA-damage response (DDR) arrests cell-cycle progression until damage is removed. DNA-damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously induced persistent DDR markers is associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break next to a telomeric sequence resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a double-strand break induces persistent DNA damage and DDR. Linear, but not circular, telomeric DNA or scrambled DNA induces a prolonged checkpoint in normal cells. In terminally differentiated tissues of old primates, DDR markers accumulate at telomeres that are not critically short. We propose that linear genomes are not uniformly reparable and that telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence.  相似文献   
982.
Rossi F  Gonzalez C 《EMBO reports》2012,13(2):157-162
Loss of function of pins (partner of inscuteable) partially disrupts neuroblast (NB) polarity and asymmetric division, results in fewer and smaller NBs and inhibits Drosophila larval brain growth. Food deprivation also inhibits growth. However, we find that the combination of loss of function of pins and dietary restriction results in loss of NB asymmetry, overproliferation of Miranda-expressing cells, brain overgrowth and increased frequency of tumour growth on allograft transplantation. The same effects are observed in well-fed pins larvae that are mutant for pi3k (phosphatidylinositol 3-kinase) or exposed to the TOR inhibitor rapamycin. Thus, pathways that are sensitive to food deprivation and dependent on PI3K and TOR are essential to suppress tumour growth in Drosophila larval brains with compromised pins function. These results highlight an unexpected crosstalk whereby the normally growth-promoting, nutrient-sensing PI3K/TOR pathway suppresses tumour formation in neural stem cells with compromised cell polarity.  相似文献   
983.

Introduction

Systemic lupus erythematosus (SLE) is characterized by frequent neuropsychiatric involvement, which includes cognitive impairment (CI). We aimed at assessing CI in a cohort of Italian SLE patients by using a wide range of neurocognitive tests specifically designed to evaluate the fronto-subcortical dysfunction. Furthermore, we aimed at testing whether CI in SLE is associated with serum autoantibodies, disease activity and chronic damage.

Methods

Fifty-eight consecutive patients were enrolled. Study protocol included data collection, evaluation of serum levels of ANA, anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-P ribosomal, anti-endothelial cell, and anti-Nedd5 antibodies. SLEDAI-2000 and SLICC were used to assess disease activity and chronic damage. Patients were administered a test battery specifically designed to detect fronto-subcortical dysfunction across five domains: memory, attention, abstract reasoning, executive function and visuospatial function. For each patient, the raw scores from each test were compared with published norms, then transformed into Z scores (deviation from normal mean), and finally summed in the Global Cognitive Dysfunction score (GCDs).

Results

Nineteen percent of patients had mild GCDs impairment (GCDs 2–3), 7% moderate (GCDs 4–5) and 5% severe (GCDs≥6). The visuospatial domain was the most compromised (MDZs = −0.89±1.23). Anti-cardiolipin IgM levels were associated with visuospatial domain impairment (r = 0.331, P = 0.005). SLEDAI correlated with GCDs, and attentional and executive domains; SLICC correlated with GCDs, and with visuospatial and attentional domains impairment.

Conclusions

Anti-phospholipids, disease activity, and chronic damage are associated with cognitive dysfunction in SLE. The use of a wide spectrum of tests allowed for a better selection of the relevant factors involved in SLE cognitive dysfunction, and standardized neuropsychological testing methods should be used for routine assessment of SLE patients.  相似文献   
984.
In different primate lentiviruses, three proteins (Vpu, Env and Nef) have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti) whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus), a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I) of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization.  相似文献   
985.
Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552 alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3β phosphorylation that is observed after wild-type APPL1 transfection. These findings—linking APPL1 mutations to familial forms of diabetes—reaffirm the critical role of APPL1 in glucose homeostasis.  相似文献   
986.
987.
988.
Membranous Nephropathy (MN) represents a large amount of Nephrotic Syndromes in the adult population and its definitive diagnosis is currently carried out through biopsy. An autoimmune condition has been demonstrated in idiopathic MN (iMN) in which some kidney structures are targeted by patient autoantibodies. Some candidate antigens have been described and other likely involved target proteins responsible for the disease are not known yet. In this work our aim is to identify these proteins by screening a lambda-phage library with patients’ sera. We enrolled four groups of patients: two MN groups of 12 full iMN patients; one control group of 15 patients suffering from other renal diseases; one control group of 15 healthy individuals. A commercial cDNA phagemide library was screened using the above described sera, in order to detect positive signals due to antigen-antibody bond. We detected one phagemide clone expressing a protein which was shown to be targeted by the antibodies of the iMN sera only. Control sera were negative. The sequence analysis of cDNA matched the Synaptonemal Complex protein 65 (SC65) coding sequence. Further proteomic analyses were carried out to validate our results. We provide evidence of an involvement of SC65 protein as an autoimmune target in iMN. Considering the invasiveness and the resulting risk coming from renal biopsy, our ongoing aim is to set a procedure able to diagnose affected patients through a little- or non-invasive method such as blood sampling rather than biopsy.  相似文献   
989.
990.
The isolation and characterization of a myogenic cell line from C57BL/6J/dydy mice is described. This line (DyA4) maintains the morphological, biochemical and electrophysiological characteristics of the primary cultured cells, at least for 20 passages. The cells actively divide as long as they are subcultured in media supplemented with horse serum and embryo extract. If the cells are not subcultured for a few days, they fuse into multinucleated contracting myotubes, which readily synthesize specific muscle products such as acetylcholinesterase and acetylcholine receptor. This dystrophic cell line expresses in vitro the same altered phenotype that is characteristic of dystrophic muscle cells in primary cultures, namely reduced acetylcholine sensitivity and reduced acetylcholine receptor expression. Because they can be grown in large amounts, and represent a pure muscle cell population which express an altered phenotype in an in vitro aneural avascular environment, DyA4 cells provide a very useful model system for investigating the pathogenesis of murine muscular dystrophy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号