首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   38篇
  467篇
  2023年   2篇
  2022年   11篇
  2021年   20篇
  2020年   10篇
  2019年   8篇
  2018年   16篇
  2017年   13篇
  2016年   24篇
  2015年   21篇
  2014年   22篇
  2013年   34篇
  2012年   35篇
  2011年   31篇
  2010年   25篇
  2009年   17篇
  2008年   18篇
  2007年   29篇
  2006年   22篇
  2005年   22篇
  2004年   19篇
  2003年   17篇
  2002年   22篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
21.
It is widely accepted that the repertoire of Melan-A-specific T cells naturally selected in melanoma patients is diverse and mostly nonoverlapping among different individuals. To date, however, no studies have addressed the TCR profile in different tumor sites and the peripheral blood from the same patient. We compared the TCR usage of Melan-A-specific T cells from different compartments of a single melanoma patient to evaluate possible clonotype expansion or preferential homing over a 4-mo follow-up period. Using HLA-A2 peptide tetramers, CD8(+) T cells recognizing the modified Melan-A immunodominant ELAGIGILTV peptide were isolated from four metastatic lesions resected from a single melanoma patient, and their TCR repertoire was studied. A panel of T cell clones was generated by cell cloning of tetramer-positive cells. Analysis of the TCR beta-chain V segment and the complementarity-determining region 3 (CDR3) length and sequence revealed a large diversity in the TCR repertoire, with only some of the clones showing a partial conservation in the CDR3. A similar degree of diversity was found by analyzing a number of T cell clones obtained after sorting a Melan-A-specific population derived from PBLs of the same patient after in vitro culture with the immunodominant epitope. Moreover, clonotypes found at one site were not present in another, suggesting the lack of expansion and circulation of one or more clonotypes. Taken together, these results buttress the notion that the CTLs recognizing the immunodominant Ag of Melan-A comprise a high number of different clonotypic TCR, of which only some exhibit common features in the CDR3.  相似文献   
22.
Cruzipain, the major cysteine proteinase from Trypanosoma cruzi, is a member of the papain family that contains a C-terminal domain in the mature enzyme, in addition to a catalytic moiety homologous to papain and some mammalian cathepsins. The native enzyme is expressed as a complex mixture of isoforms and has not been crystallized. Previous attempts to express recombinant mature cruzipain containing the C-terminal domain have failed. For this reason, the three-dimensional structure of the complete mature enzyme is not known, although the structure of a recombinant truncated molecule lacking the C-terminal domain (cruzaindeltac) has been determined. We report here the expression of active, N-glycosylated, complete mature cruzipain in an insect cell/baculovirus system. The purified recombinant enzyme, obtained with a yield of about 0.2 mg/100 ml of culture supernatant, has an apparent molecular mass similar, and an identical N-terminal sequence, compared with the native enzyme. The expressed protein is able to process itself by self-proteolysis, leaving the isolated C-terminal domain, and has kinetic properties similar to those of native cruzipain, although some differences in substrate specificity were found. These results open up the possibility of obtaining recombinant intact mature cruzipain of a quality and in quantity suitable for X-ray crystallography.  相似文献   
23.
To evaluate trends in the osmoregulatory behavior of neotropical, palaemonid shrimps, we investigated osmotic and ionic regulatory patterns in five species of Palaemon or Macrobrachium. The species' life histories depend on saline water to differing degrees, their habitats ranging from the marine/intertidal (P. northropi), through estuaries (P. pandaliformis) to coastal, freshwater streams (M. olfersii, M. potiuna) and inland, continental river systems (M. brasiliense). Hemolymph osmolality, chloride, sodium and magnesium concentrations were measured in shrimps exposed to experimental media ranging from fresh water (<0.5 per thousand ) to concentrated seawater (42 per thousand ) for up to 10 days. The marine and estuarine Palaemon species exhibit well-developed hyper/hypo-osmotic, sodium and chloride regulatory capabilities in mid-range salinities, tending to hyperconform in low salinities. The freshwater Macrobrachium species show variable hyperosmotic, sodium and chloride regulatory capacities, tending to hypoconform or unable to survive at higher salinities. All species hyper-regulate magnesium in fresh water, but hyporegulate strongly in saline media. Palaemonids from the saline habitats show the strongest osmoregulatory capabilities, and fresh water may have been gradually invaded by ancestral species with similar regulatory capacity. However, this regulatory plasticity has been lost to varying degrees in extant freshwater species.  相似文献   
24.
The reversible formal potentials of auracyanin A and auracyanin B, two closely related "blue" copper proteins from the photosynthetic bacterium Chloroflexus aurantiacus, have been determined by protein film voltammetry in the range 4相似文献   
25.
26.
27.
Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2-3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.  相似文献   
28.
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre‐ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre‐ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (~180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in‐depth analysis of their protein–protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2‐hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein–protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre‐ribosome factors forming the ctUTP‐A and ctUTP‐B modules, and the Brix‐domain containing assembly factors of the pre‐60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.  相似文献   
29.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   
30.
Binding of thrombopoietin (TPO) to the cMpl receptor on human platelets potentiates aggregation induced by a number of agonists, including ADP. In this work, we found that TPO was able to restore ADP-induced platelet aggregation upon blockade of the G(q)-coupled P2Y1 purinergic receptor but not upon inhibition of the G(i)-coupled P2Y12 receptor. Moreover, TPO triggered platelet aggregation upon co-stimulation of G(z) by epinephrine but not upon co-stimulation of G(q) by the thromboxane analogue U46619. Platelet aggregation induced by TPO and G(i) stimulation was biphasic, and cyclooxygenase inhibitors prevented the second but not the first phase. In contrast to ADP, TPO was unable to induce integrin alpha(IIb)beta(3) activation, as evaluated by binding of both fibrinogen and PAC-1 monoclonal antibody. However, ADP-induced activation of integrin alpha(IIb)beta(3) was blocked by antagonists of the G(q)-coupled P2Y1 receptor but was completely restored by the simultaneous co-stimulation of cMpl receptor by TPO. Inside-out activation of integrin alpha(IIb)beta(3) induced by TPO and G(i) stimulation occurred independently of thromboxane A(2) production and was not mediated by protein kinase C, MAP kinases, or Rho-dependent kinase. Importantly, TPO and G(i) activation of integrin alpha(IIb)beta(3) was suppressed by wortmannin and Ly294002, suggesting a critical regulation by phosphatidylinositol 3-kinase. We found that TPO did not activate phospholipase C in human platelets and was unable to restore ADP-induced phospholipase C activation upon blockade of the G(q)-coupled P2Y1 receptor. TPO induced a rapid and sustained activation of the small GTPase Rap1B through a pathway dependent on phosphatidylinositol 3-kinase. In ADP-stimulated platelets, Rap1B activation was reduced, although not abolished, upon blockade of the P2Y1 receptor. However, accumulation of GTP-bound Rap1B in platelets activated by co-stimulation of cMpl and P2Y12 receptor was identical to that induced by the simultaneous ligation of P2Y1 and P2Y12 receptor by ADP. These results indicate that TPO can integrate G(i), but not G(q), stimulation and can efficiently support integrin alpha(IIb)beta(3) activation platelet aggregation by an alternative signaling pathway independent of phospholipase C but involving the phosphatidylinositol 3-kinase and the small GTPase Rap1B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号