首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   100篇
  1196篇
  2023年   4篇
  2022年   9篇
  2021年   21篇
  2020年   6篇
  2019年   10篇
  2018年   19篇
  2017年   16篇
  2016年   27篇
  2015年   42篇
  2014年   53篇
  2013年   67篇
  2012年   113篇
  2011年   73篇
  2010年   56篇
  2009年   62篇
  2008年   81篇
  2007年   68篇
  2006年   91篇
  2005年   69篇
  2004年   63篇
  2003年   62篇
  2002年   59篇
  2001年   14篇
  2000年   6篇
  1999年   15篇
  1998年   21篇
  1997年   16篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1196条查询结果,搜索用时 0 毫秒
11.
The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.  相似文献   
12.
13.
We studied in rats the expression of genes involved in gluconeogenesis from glutamine and glycerol in the small intestine (SI) during fasting and diabetes. From Northern blot and enzymatic studies, we report that only phosphoenolpyruvate carboxykinase (PEPCK) activity is induced at 24 h of fasting, whereas glucose-6-phosphatase (G-6-Pase) activity is induced only from 48 h. Both genes then plateau, whereas glutaminase and glycerokinase strikingly rebound between 48 and 72 h. The two latter genes are fully expressed in streptozotocin-diabetic rats. From arteriovenous balance and isotopic techniques, we show that the SI does not release glucose at 24 h of fasting and that SI gluconeogenesis contributes to 35% of total glucose production in 72-h-fasted rats. The new findings are that 1) the SI can quantitatively account for up to one-third of glucose production in prolonged fasting; 2) the induction of PEPCK is not sufficient by itself to trigger SI gluconeogenesis; 3) G-6-Pase likely plays a crucial role in this process; and 4) glutaminase and glycerokinase may play a key potentiating role in the latest times of fasting and in diabetes.  相似文献   
14.
We have generated a novel transgenic mouse model on a C57BL/6J genetic background that coexpresses KM670/671NL mutated amyloid precursor protein and L166P mutated presenilin 1 under the control of a neuron-specific Thy1 promoter element (APPPS1 mice). Cerebral amyloidosis starts at 6-8 weeks and the ratio of human amyloid (A)beta42 to Abeta40 is 1.5 and 5 in pre-depositing and amyloid-depositing mice, respectively. Consistent with this ratio, extensive congophilic parenchymal amyloid but minimal amyloid angiopathy is observed. Amyloid-associated pathologies include dystrophic synaptic boutons, hyperphosphorylated tau-positive neuritic structures and robust gliosis, with neocortical microglia number increasing threefold from 1 to 8 months of age. Global neocortical neuron loss is not apparent up to 8 months of age, but local neuron loss in the dentate gyrus is observed. Because of the early onset of amyloid lesions, the defined genetic background of the model and the facile breeding characteristics, APPPS1 mice are well suited for studying therapeutic strategies and the pathomechanism of amyloidosis by cross-breeding to other genetically engineered mouse models.  相似文献   
15.
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.  相似文献   
16.
The study of protistan functional diversity is crucial to understand the dynamics of oceanic ecological processes. We combined the metabarcoding data of various coastal ecosystems and a newly developed trait-based approach to study the link between taxonomic and functional diversity across marine protistan communities of different size-classes. Environmental DNA was extracted and the V4 18S rDNA genomic region was amplified and sequenced. In parallel, we tried to annotate the operational taxonomic units (OTUs) from our metabarcoding dataset to 30 biological traits using published and accessible information on protists. We then developed a method to study trait correlations across protists (i.e. trade-offs) in order to build the best functional groups. Based on the annotated OTUs and our functional groups, we demonstrated that the functional diversity of marine protist communities varied in parallel with their taxonomic diversity. The coupling between functional and taxonomic diversity was conserved across different protist size classes. However, the smallest size-fraction was characterized by wider taxonomic and functional groups diversity, corroborating the idea that nanoplankton and picoplankton are part of a more stable ecological background on which larger protists and metazoans might develop.  相似文献   
17.
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.  相似文献   
18.
19.
The synchrony effect refers to the beneficial impact of temporal matching between the timing of cognitive task administration and preferred time-of-day for diurnal activity. Aging is often associated with an advance in sleep-wake timing and concomitant optimal performance levels in the morning. In contrast, young adults often perform better in the evening hours. So far, the synchrony effect has been tested at fixed clock times, neglecting the individual's sleep-wake schedule and thus introducing confounds, such as differences in accumulated sleep pressure or circadian phase, which may exacerbate synchrony effects. To probe this hypothesis, the authors tested older morning and young evening chronotypes with a psychomotor vigilance and a Stroop paradigm once at fixed morning and evening hours and once adapting testing time to their preferred sleep-wake schedule in a within-subject design. The authors observe a persistence of synchrony effects for overall median reaction times during a psychomotor vigilance task, even when testing time is adapted to the specific individual's sleep-wake schedule. However, data analysis also indicates that time-of-day modulations are weakened under those conditions for incongruent trials on Stroop performance and the slowest reaction times on the psychomotor vigilance task. The latter result suggests that the classically observed synchrony effect may be partially mediated by a series of parameters, such as differences in socio-professional timing constraints, the amount of accumulated sleep need, or circadian phase, all leading to differential arousal levels at testing.  相似文献   
20.
BACKGROUND AND AIMS: Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao-Moniliophthora perniciosa interaction. METHODS: Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao-M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5' end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. KEY RESULTS: A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. CONCLUSIONS: As far as is known this is the first EST resource from the cacao-M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches' broom, and as a source of polymorphism for molecular marker development and marker-assisted selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号