全文获取类型
收费全文 | 1096篇 |
免费 | 100篇 |
专业分类
1196篇 |
出版年
2023年 | 4篇 |
2022年 | 9篇 |
2021年 | 21篇 |
2020年 | 6篇 |
2019年 | 10篇 |
2018年 | 19篇 |
2017年 | 16篇 |
2016年 | 27篇 |
2015年 | 42篇 |
2014年 | 53篇 |
2013年 | 67篇 |
2012年 | 113篇 |
2011年 | 73篇 |
2010年 | 56篇 |
2009年 | 62篇 |
2008年 | 81篇 |
2007年 | 68篇 |
2006年 | 91篇 |
2005年 | 69篇 |
2004年 | 63篇 |
2003年 | 62篇 |
2002年 | 59篇 |
2001年 | 14篇 |
2000年 | 6篇 |
1999年 | 15篇 |
1998年 | 21篇 |
1997年 | 16篇 |
1996年 | 7篇 |
1995年 | 9篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 7篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 2篇 |
1978年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有1196条查询结果,搜索用时 0 毫秒
991.
Giulia Salvatore Nathalie Bernoud-Hubac Nathalie Bissay Cyrille Debard Patricia Daira Emmanuelle Meugnier Fabienne Proamer Daniel Hanau Hubert Vidal Maurizio Aricò Christine Delprat Karène Mahtouk 《Journal of lipid research》2015,56(6):1110-1122
Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2–12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells “foamy DCs” and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. 相似文献
992.
Abeta fibrils, which are central to the pathology of Alzheimer's disease, form a cross-beta-structure that contains likely parallel beta-sheets with a salt bridge between residues Asp23 and Lys28. Recent studies suggest that soluble oligomers of amyloid peptides have neurotoxic effects in cell cultures, raising the interest in studying the structures of these intermediate forms. Here, we present three models of possible soluble Abeta forms based on the sequences similarities, assumed to support local structural similarities, of the Abeta peptide with fragments of three proteins (adhesin, Semliki Forest virus capsid protein, and transthyretin). These three models share a similar structure in the C-terminal region composed of two beta-strands connected by a loop, which contain the Asp23-Lys28 salt bridge. This segment is also structurally well conserved in Abeta fibril forms. Differences between the three monomeric models occur in the N-terminal region and in the C-terminal tail. These three models might sample some of the most stable conformers of the soluble Abeta peptide within oligomeric assemblies, which were modeled here in the form of dimers, trimers, tetramers, and hexamers. The consistency of these models is discussed with respect to available experimental and theoretical data. 相似文献
993.
994.
995.
Gombault A Godin F Sy D Legrand B Chautard H Vallée B Vovelle F Bénédetti H 《Journal of molecular biology》2007,374(3):604-617
Tfs1p and Ylr179cp are yeast proteins belonging to the PEBP family. Tfs1p, but not Ylr179cp, has been shown to interact with and inhibit Ira2p, a GTPase-activating protein of Ras. Tfs1p has been shown to be a specific inhibitor of the CPY protease and the 3D structure of the complex has been resolved. To shed light on the molecular determinants of Tfs1p involved in the Tfs1/Ira2 interaction, the 3D structure of Ylr179cp has been modelled and compared to that of Tfs1p. Tfs1p point mutants and Tfs1 hybrid proteins combining regions of Tfs1p and Ylr179cp were also designed and their function was tested. Results, interpreted from a structural point of view, show that the accessibility of the surface pocket of Tfs1p, its N-terminal region and the specific electrostatic properties of a large surface region containing these two elements, play a crucial role in this interaction. 相似文献
996.
Stéphane Maillard Francesca Damiola Enora Clero Maroulio Pertesi Nivonirina Robinot Frédérique Rachédi Jean-Louis Boissin Joseph Sebbag Larrys Shan Frédérique Bost-Bezeaud Patrick Petitdidier Fran?oise Doyon Constance Xhaard Carole Rubino Hélène Blanché Vladimir Drozdovitch Fabienne Lesueur Florent de Vathaire 《PloS one》2015,10(4)
Background
French Polynesia has one of the highest incidence rates of thyroid cancer worldwide. Relationships with the atmospheric nuclear weapons tests and other environmental, biological, or behavioral factors have already been reported, but genetic susceptibility has yet to be investigated. We assessed the contribution of polymorphisms at the 9q22.33 and 14q13.3 loci identified by GWAS, and within the DNA repair gene ATM, to the risk of differentiated thyroid cancer (DTC) in 177 cases and 275 matched controls from the native population.Principal Findings
For the GWAS SNP rs965513 near FOXE1, an association was found between genotypes G/A and A/A, and risk of DTC. A multiplicative effect of allele A was even noted. An excess risk was also observed in individuals carrying two long alleles of the poly-alanine tract expansion in FOXE1, while no association was observed with rs1867277 falling in the promoter region of the gene. In contrast, the GWAS SNP rs944289 (NKX2-1) did not show any significant association. Although the missense substitution D1853N (rs1801516) in ATM was rare in the population, carriers of the minor allele (A) also showed an excess risk. The relationships between these five polymorphisms and the risk of DTC were not contingent on the body surface area, body mass index, ethnicity or dietary iodine intake. However, an interaction was evidenced between the thyroid radiation dose and rs944289.Significance
A clear link could not be established between the high incidence in French Polynesia and the studied polymorphisms, involved in susceptibility to DTC in other populations. Important variation in allele frequencies was observed in the Polynesian population as compared to the European populations. For FOXE1 rs965513, the direction of association and the effect size was similar to that observed in other populations, whereas for ATM rs1801516, the minor allele was associated to an increased risk in the Polynesian population and with a decreased risk in the European population. 相似文献997.
Fehr T Haspot F Mollov J Chittenden M Hogan T Sykes M 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(1):165-173
Allogeneic bone marrow chimerism induces robust systemic tolerance to donor alloantigens. Achievement of chimerism requires avoidance of marrow rejection by pre-existing CD4 and CD8 T cells, either of which can reject fully MHC-mismatched marrow. Both barriers are overcome with a minimal regimen involving anti-CD154 and low dose (3 Gy) total body irradiation, allowing achievement of mixed chimerism and tolerance in mice. CD4 cells are required to prevent marrow rejection by CD8 cells via a novel pathway, wherein recipient CD4 cells interacting with recipient class II MHC tolerize directly alloreactive CD8 cells. We demonstrate a critical role for recipient MHC class II, B cells, and dendritic cells in a pathway culminating in deletional tolerance of peripheral alloreactive CD8 cells. 相似文献
998.
999.
Growing evidence suggests that the neuropeptide Y (NPY) system plays an important role in the immune system. Yet, little is known about the expression of NPY and receptors in the immune system. Moreover, original contradicting results have confused the picture and hampered a clear understanding of its role in the immune system. The use of Y(1) receptor-deficient mice, combined with advanced methods to investigate immune functions, have provided the solution to the problem raised by previous disparities. From results obtained using Y(1)-deficient mice (Y(1)(-/-)), we uncovered a bimodal role for Y(1) on immune cells. Y(1) expression on antigen-presenting cells (APC) is essential for their function as T cell priming elements. Conversely, Y(1) signaling in T cells plays a regulatory role without which T cells are hyper-responsive. The opposite role of Y(1) on APC and T cells has reconciled previous disparities by showing that signaling via Y(1) protects against inflammation by inhibiting T cell responses, whereas Y(1)(-/-) mice are protected in the same inflammatory models due to defective APCs. 相似文献
1000.
Reconstructing eukaryotic NAD metabolism 总被引:5,自引:0,他引:5
Rongvaux A Andris F Van Gool F Leo O 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(7):683-690
In addition to its well-known role as a coenzyme in oxidation-reduction reactions, the distinct role of NAD as a precursor for molecules involved in cell regulation has been clearly established. The involvement of NAD in these regulatory processes is based on its ability to function as a donor of ADP-ribose; NAD synthesis is therefore required to avoid depletion of the intracellular pool. The rising interest in the biosynthetic routes leading to NAD formation and the highly conserved nature of the enzymes involved prompted us to reconstruct the NAD biosynthetic routes operating in distinct eukaryotic organisms. The evidence obtained from biochemical and computational analysis provides a good example of how complex metabolic pathways may evolve. In particular, it is proposed that the development of several NAD biosynthetic routes during evolution has led to partial functional redundancy, allowing a given pathway to freely acquire novel functions unrelated to NAD biosynthesis. 相似文献