首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   100篇
  2023年   4篇
  2022年   8篇
  2021年   21篇
  2020年   6篇
  2019年   10篇
  2018年   19篇
  2017年   16篇
  2016年   27篇
  2015年   42篇
  2014年   53篇
  2013年   67篇
  2012年   113篇
  2011年   73篇
  2010年   56篇
  2009年   62篇
  2008年   81篇
  2007年   68篇
  2006年   91篇
  2005年   69篇
  2004年   63篇
  2003年   62篇
  2002年   59篇
  2001年   14篇
  2000年   6篇
  1999年   15篇
  1998年   21篇
  1997年   16篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1195条查询结果,搜索用时 46 毫秒
971.
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4+ T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2ΔCD4Cre) were infected with the protozoan parasite Leishmania major. N1N2ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.  相似文献   
972.
973.
Background and AimsThe pacaya palm is a dioecious neotropical palm species that is exploited in Latin America for its male inflorescence, which is edible when immature. It is cultivated, in a non-intensive manner, in Guatemala, where a morphotype occurs that produces much larger, more highly branched inflorescences compared with wild palms. We sought to identify molecular factors underlying this phenotypic divergence, which is likely to be a product of domestication.MethodsWe performed RNA-seq-based studies on immature pacaya palm male inflorescences in order to identify genes that might be directly or indirectly affected in their expression in relation to domestication. We also measured the accumulation of a range of soluble sugar molecules to provide information on the biochemical status of the two different types of material.Key ResultsA total of 408 genes were found to display significantly different expression levels between the wild and cultivated morphotypes. Three different functional categories were found to be enriched in the gene set that was upregulated in the cultivated morphotype: redox balance; secondary metabolism; and transport. Several sugars were found to accumulate at higher levels in inflorescences of the cultivated morphotype, in particular myo-inositol, fructose and glucose.ConclusionsThe observed upregulation of redox-related genes in the cultivated morphotype is corroborated by the observation of higher myo-inositol accumulation, which has been shown to be associated with enhanced scavenging of reactive oxygen species in other plants and which may affect meristem activity.  相似文献   
974.
Crepidorhopalon perennis is a metallophyte critically endangered by mining activities and currently known from only one site on copper‐rich soils in Katanga (Dem. Rep. Congo). It is closely related to the annual C. tenuis, also a rare metallophyte, but with a broader geographical range. We investigated the variation in morphometric traits and ecological niches (based on edaphic conditions and pollinator assemblages) of C. perennis and C. tenuis, to evaluate the risk of inter‐specific competition, and their potential for hybridization to ascertain if C. perennis might be at risk of genetic swamping by its more widespread congener. We examined whether species were found under sympatric or parapatric settings with opportunity for hybridization (or gene exchange). Such knowledge is essential for implementing restoration management protocols, including the introduction of C. perennis into substitution sites where C. tenuis might be already present. Fourteen morphological characters and 11 soil variables were measured and visiting pollinator species were identified at the site where the two species co‐occur. Our results show that the two species can be distinguished based on their morphological traits, show niche overlap based on edaphic properties, and share the same pollinator assemblage. In addition, no morphologically intermediate individuals could be detected, suggesting no hybridization, and that the two species may be reproductively isolated. We conclude that C. perennis conservation and restoration operations can be realized in substitution sites where C. tenuis may be present, with the need, however, to evaluate the potential effect of sharing a pollinator assemblage on reproductive success of both species.  相似文献   
975.
Endoplasmic reticulum (ER) stress is proposed as a novel link between elevated fatty acids levels, obesity and insulin resistance in liver and adipose tissue. However, it is unknown whether ER stress also contributes to lipid-induced insulin resistance in skeletal muscle, the major tissue responsible of insulin-stimulated glucose disposal. Here, we investigated the possible role of ER stress in palmitate-induced alterations of insulin action, both in vivo, in gastrocnemius of high-palm diet fed mice, and in vitro, in palmitate-treated C(2)C(12) myotubes. We demonstrated that 8 weeks of high-palm diet increased the expression of ER stress markers in muscle of mice, whereas ex-vivo insulin-stimulated PKB phosphorylation was not altered in this tissue. In addition, exposure of C(2)C(12) myotubes to either tuncamycine or palmitate induced ER stress and altered insulin-stimulated PKB phosphorylation. However, alleviation of ER stress by either TUDCA or 4-PBA treatments, or by overexpressing Grp78, did not restore palmitate-induced reduction of insulin-stimulated PKB phosphorylation in C(2)C(12) myotubes. This work highlights that, even ER stress is associated with palmitate-induced alterations of insulin signaling, ER stress is likely not the major culprit of this effect in myotubes, suggesting that the previously proposed link between ER stress and insulin resistance is less important in skeletal muscle than in adipose tissue and liver.  相似文献   
976.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   
977.
In vivo, ectopic accumulation of fatty acids in muscles leads to alterations in insulin signaling at both the IRS1 and Akt steps. However, in vitro treatments with saturated fatty acids or their derivative ceramide demonstrate an effect only at the Akt step. In this study, we adapted our experimental procedures to mimic the in vivo situation and show that the double-stranded RNA-dependent protein kinase (PKR) is involved in the long-term effects of saturated fatty acids on IRS1. C2C12 or human muscle cells were incubated with palmitate or directly with ceramide for short or long periods, and insulin signaling pathway activity was evaluated. PKR involvement was assessed through pharmacological and genetic studies. Short-term treatments of myotubes with palmitate, a ceramide precursor, or directly with ceramide induce an inhibition of Akt, whereas prolonged periods of treatment show an additive inhibition of insulin signaling through increased IRS1 serine 307 phosphorylation. PKR mRNA, protein, and phosphorylation are increased in insulin-resistant muscles. When PKR activity is reduced (siRNA or a pharmacological inhibitor), serine phosphorylation of IRS1 is reduced, and insulin-induced phosphorylation of Akt is improved. Finally, we show that JNK mediates ceramide-activated PKR inhibitory action on IRS1. Together, in the long term, our results show that ceramide acts at two distinct levels of the insulin signaling pathway (IRS1 and Akt). PKR, which is induced by both inflammation signals and ceramide, could play a major role in the development of insulin resistance in muscle cells.  相似文献   
978.
979.
980.
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.Key Words: plasma membrane, Medicago, root, legume-Rhizobium symbiosis, redox, sterol, sphingolipid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号