首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   105篇
  2023年   4篇
  2022年   5篇
  2021年   21篇
  2020年   7篇
  2019年   10篇
  2018年   19篇
  2017年   18篇
  2016年   29篇
  2015年   44篇
  2014年   57篇
  2013年   73篇
  2012年   119篇
  2011年   79篇
  2010年   62篇
  2009年   66篇
  2008年   86篇
  2007年   70篇
  2006年   96篇
  2005年   70篇
  2004年   68篇
  2003年   63篇
  2002年   64篇
  2001年   15篇
  2000年   7篇
  1999年   18篇
  1998年   22篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   5篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1974年   1篇
  1965年   1篇
排序方式: 共有1298条查询结果,搜索用时 31 毫秒
61.
Pectins are a highly complex family of cell wall polysaccharides. As a result of a lack of specific mutants, it has been difficult to study the biosynthesis of pectins and their role in vivo. We have isolated two allelic mutants, named quasimodo1 (qua1-1 and qua1-2), that are dwarfed and show reduced cell adhesion. Mutant cell walls showed a 25% reduction in galacturonic acid levels compared with the wild type, indicating reduced pectin content, whereas neutral sugars remained unchanged. Immersion immunofluorescence with the JIM5 and JIM7 monoclonal antibodies that recognize homogalacturonan epitopes revealed less labeling of mutant roots compared with the wild type. Both mutants carry a T-DNA insertion in a gene (QUA1) that encodes a putative membrane-bound glycosyltransferase of family 8. We present evidence for the possible involvement of a glycosyltransferase of this family in the synthesis of pectic polysaccharides, suggesting that other members of this large multigene family in Arabidopsis also may be important for pectin biosynthesis. The mutant phenotype is consistent with a central role for pectins in cell adhesion.  相似文献   
62.
Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency.  相似文献   
63.
64.
A cDNA coding for phytocystatin, a protease inhibitor, was isolated from wheat embryos by differential display RT-PCR and the corresponding full-length cDNA (named WC5 for wheat cystatin gene 5) subsequently obtained by RACE. The deduced primary sequence of the protein suggests the presence of a 28 amino acid N-terminal signal sequence and a 100 amino acid mature protein containing the three consensus motifs known to interact with the active site of cysteine peptidases. Northern and western analysis revealed a spatio-temporal pattern of the cystatin gene expression during caryopse development. In the embryo, WC5 was only expressed during early embryogenesis whereas, in seed covering layers, WC5 expression was restricted to the maturation stage of grain development. In addition, immunolocalization experiments showed that cystatin accumulated in the aleurone layer of the maturating seed and in the parenchymal tissues of the embryo scutellum. A recombinant form of the wheat cystatin was shown to be able to inhibit peptidase activities present in whole seed protein extracts. In addition, immunological techniques allowed us to identify two putative target peptidases. The possible roles of the cystatin protein are discussed in relation with tissular localization and putative peptidase targets during seed maturation.  相似文献   
65.
Intestinal ischemia-reperfusion has been implicated in the systemic inflammatory response and organ injury in hemorrhagic shock, but the exact role of the intestine has never been directly demonstrated. Preconditioning (PC) with brief periods of intermittent ischemia is a known potent anti-ischemic intervention and thus can be used as a tool to assess the role of local intestinal ischemia-reperfusion injury in systemic inflammatory response. Thus rats were first subjected to sham surgery or intestinal preconditioning with four cycles of 1-min ischemia and 10 min of reperfusion 24 h before hemorrhagic shock followed by resuscitation. PC reduced fluid requirements, lung edema, and lactate and tumor necrosis factor-alpha production. These effects were abolished by the heme-oxygenase-1 (HO-1) inhibitor tin protoporphyrin (Sn-PP). PC induced more than fivefold in intestinal HO-1 expression. These results suggest that intestinal ischemia-reperfusion is a major trigger for inflammatory response and organ injury in nonseptic shock. HO-1 appears to play an important role in the protective effect of intestinal preconditioning.  相似文献   
66.
67.
Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.  相似文献   
68.
Cell fusion     
  相似文献   
69.
We report on the molecular cloning of the Phytophthora megasperma H20 (PmH20) glycoprotein shown previously as an inducer of the hypersensitive response, of localized acquired resistance and of systemic acquired resistance in tobacco (Nicotiana tabacum), and of the PmH20 alpha- and beta-megaspermin, two elicitins of class I-A and I-B, respectively. The structure of the glycoprotein shows a signal peptide of 20 amino acids followed by the typical elicitin 98-amino acid-long domain and a 77-amino acid-long C-terminal domain carrying an O-glycosylated moiety. The molecular mass deduced from the translated cDNA sequence is 14,920 and 18,676 D as determined by mass spectrometry. This structure together with multiple sequence alignments and phylogenetic analyses indicate that the glycoprotein belongs to class III elicitins. It is the first class III elicitin protein characterized, which we named gamma-megaspermin. We compared the biological activity of the three PmH20 elicitins when applied to tobacco cv Samsun NN plants. Although alpha- and gamma-megaspermin were similarly active, beta-megaspermin was the most active in inducing the hypersensitive response and localized acquired resistance, which was assessed by measuring the levels of acidic and basic pathogenesis-related proteins and of the antioxidant phytoalexin scopoletin. The three elicitins induced similar levels of systemic acquired resistance measured as the expression of acidic PR proteins and is increased resistance to challenge tobacco mosaic virus infection.  相似文献   
70.
Paracrine cell-to-cell interactions are crucial events during atherogenesis, however, little is known on the role of gap junctional communication during this process. We recently demonstrated increased expression of Cx43 in intimal smooth muscle cells and in a subset of endothelial cells covering the shoulder of atherosclerotic plaques. The purpose of this study was to examine the role of Cx43 in the development of atherosclerosis in vivo. Atherosclerosis-susceptible LDL receptor-deficient (LDLR(-/-)) mice were intercrossed with mice heterozygous for Cx43 (Cx43(+/-) mice). Male mice with normal (Cx43(+/+)LDLR(-/-)) or reduced (Cx43(+/-)LDLR(-/-)) Cx43 level of 10 weeks old were fed a cholesterol-rich diet (1.25%) for 14 weeks. Both groups of mice showed similar increases in serum lipids and body weight. Interestingly, the progression of atherosclerosis was reduced by 50% (P < 0.01) in the thoraco-abdominal aorta and in the aortic roots of Cx43(+/-)LDLR(-/-) mice compared with Cx43(+/+)LDLR(-/-) littermate controls. In addition, atheroma in Cx43(+/-)LDLR(-/-) mice contained fewer inflammatory cells and exhibited thicker fibrous caps with more collagen and smooth muscle cells, important features associated, in human, with stable atherosclerotic lesions. Thus, reducing Cx43 expression in mice provides beneficial effects on both the progression and composition of the atherosclerotic lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号