首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   130篇
  1360篇
  2024年   1篇
  2023年   11篇
  2022年   23篇
  2021年   31篇
  2020年   25篇
  2019年   27篇
  2018年   24篇
  2017年   43篇
  2016年   46篇
  2015年   82篇
  2014年   85篇
  2013年   90篇
  2012年   124篇
  2011年   105篇
  2010年   71篇
  2009年   77篇
  2008年   91篇
  2007年   97篇
  2006年   62篇
  2005年   59篇
  2004年   57篇
  2003年   33篇
  2002年   46篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1973年   2篇
  1971年   2篇
  1968年   1篇
排序方式: 共有1360条查询结果,搜索用时 0 毫秒
141.

Background

Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), is unique among human pathogens in its capacity to produce a polyketide-derived macrolide called mycolactone, making this molecule an attractive candidate target for diagnosis and disease monitoring. Whether mycolactone diffuses from ulcerated lesions in clinically accessible samples and is modulated by antibiotic therapy remained to be established.

Methodology/Principal Finding

Peripheral blood and ulcer exudates were sampled from patients at various stages of antibiotic therapy in Ghana and Ivory Coast. Total lipids were extracted from serum, white cell pellets and ulcer exudates with organic solvents. The presence of mycolactone in these extracts was then analyzed by a recently published, field-friendly method using thin layer chromatography and fluorescence detection. This approach did not allow us to detect mycolactone accurately, because of a high background due to co-extracted human lipids. We thus used a previously established approach based on high performance liquid chromatography coupled to mass spectrometry. By this means, we could identify structurally intact mycolactone in ulcer exudates and serum of patients, and evaluate the impact of antibiotic treatment on the concentration of mycolactone.

Conclusions/Significance

Our study provides the proof of concept that assays based on mycolactone detection in serum and ulcer exudates can form the basis of BU diagnostic tests. However, the identification of mycolactone required a technology that is not compatible with field conditions and point-of-care assays for mycolactone detection remain to be worked out. Notably, we found mycolactone in ulcer exudates harvested at the end of antibiotic therapy, suggesting that the toxin is eliminated by BU patients at a slow rate. Our results also indicated that mycolactone titres in the serum may reflect a positive response to antibiotics, a possibility that it will be interesting to examine further through longitudinal studies.  相似文献   
142.

Background

Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate.

Methodology/Principal Findings

We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls.

Conclusions/Significance

Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.  相似文献   
143.
144.
145.
The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation.  相似文献   
146.
147.

Background

Human genetic factors influence the outcome of pegylated interferon and ribavirin hepatitis C therapy. We explored the role of IL28B, APOH and ITPA SNPs on the outcomes of triple therapy including telaprevir or boceprevir in patients with compensated cirrhosis chronically infected with HCV-1.

Patients and Methods

A total of 256 HCV-1 Caucasian treatment-experienced patients with compensated cirrhosis from the ANRS CO20-CUPIC cohort were genotyped for a total of 10 candidate SNPs in IL28B (rs12979860 and rs368234815), APOH (rs8178822, rs12944940, rs10048158, rs52797880, rs1801689 and rs1801690) and ITPA (rs1127354 and rs7270101). We tested the association of IL28B and APOH SNPs with sustained virological response and of ITPA SNPs with anemia related phenotypes by means of logistic regression assuming an additive genetic model.

Results

None of the six APOH SNPs were associated with sustained virological response. The favorable alleles of the IL28B SNPs rs12979860 and rs368234815 were associated with sustained virological response (rs12979860: OR = 2.35[1.50–3.70], P = 2x10-4). Refined analysis showed that the effect of IL28B SNPs on sustained virological response was restricted to prior PegIFN/RBV relapse (OR = 3.80[1.82–8.92], P = 8x10-4). We also confirmed the association between ITPA low activity alleles and protection against early hemoglobin decline in triple therapy (P = 2x10-5).

Conclusion

Our results suggest that the screening of rs12979860 may remain interesting for decision making in prior relapse HCV-1 Caucasian patients with compensated cirrhosis eligible for a telaprevir- or boceprevir-based therapy.  相似文献   
148.
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.  相似文献   
149.
Only a few mutations affecting flowering time have been detected in maize. We analyzed a spontaneous early mutation, vgt-f7p, which appeared during production of the inbred line F7. This mutation shortens the time from planting to flowering by about 100 growing degree days (GDD), and reduces the number of nodes. It therefore seems to affect the timing of meristem differentiation from a vegetative to a reproductive state. It was mapped to a 6 cM confidence interval on chromosome 8, using a QTL mapping approach. QTL analysis of a mapping population generated by crossing the mutant F7 line (F7p) and the Gaspé flint population showed that vgt-f7p is probably allelic to vgt1, a QTL described in previous studies, and affects earliness more strongly than the Gaspé allele at vgt1. Global analysis of the QTL in the region suggested that there may be two consensus QTL, vgt1 and vgt2. These two QTL have contrasting allelic effects: rare alleles conferring extremely early flowering at vgt1 vs. greater diversity and milder effects at locus vgt2. Finally, detailed syntenic analysis showed that the vgt1 region displays a highly conserved duplicated region on chromosome 6, which also plays an important role in maize flowering time variation. The cloning of vgt1 should, therefore, also facilitate the analysis of the molecular basis of variation due to this second region.  相似文献   
150.
Nineteen E. faecium strains isolated from chicken caecum samples, collected in slaughterhouses and highly resistant to vancomycin or gentamicin, were coresistant to erythromycin, and/or tetracyclines, and/or streptogramins, and/or avilamycin. Multiple antibiotic resistance was related to the presence in various combinations of aac(6')-aph(2"), erm(B), emtA, mef(A), tet(L), tet(M), and vanA genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号