全文获取类型
收费全文 | 1206篇 |
免费 | 128篇 |
专业分类
1334篇 |
出版年
2024年 | 1篇 |
2023年 | 11篇 |
2022年 | 22篇 |
2021年 | 31篇 |
2020年 | 25篇 |
2019年 | 27篇 |
2018年 | 24篇 |
2017年 | 41篇 |
2016年 | 46篇 |
2015年 | 81篇 |
2014年 | 85篇 |
2013年 | 87篇 |
2012年 | 123篇 |
2011年 | 99篇 |
2010年 | 69篇 |
2009年 | 78篇 |
2008年 | 85篇 |
2007年 | 97篇 |
2006年 | 62篇 |
2005年 | 57篇 |
2004年 | 57篇 |
2003年 | 35篇 |
2002年 | 46篇 |
2001年 | 8篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有1334条查询结果,搜索用时 15 毫秒
91.
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E. coli TorA protein. When expressed in E. coli, the thermophilic RR-Glc chimera was successfully synthesized and efficiently translocated into the periplasm of the wild type strain. In contrast, the beta-glycosidase accumulated within the cytoplasm of all the tat mutants analyzed. The beta-glycosidase synthesized in these strains exhibited thermophilic properties. These results demonstrated, for the first time, the capacity of the E. coli Tat system to export cytoplasmic hyperthermophilic protein, implying an important potential of the Tat system for the production of thermostable enzymes used in bioprocessing applications. 相似文献
92.
Clara cell secretory protein and phospholipase A2 activity modulate acute ventilator-induced lung injury in mice. 总被引:16,自引:0,他引:16
Sawako Yoshikawa Takashige Miyahara Susan D Reynolds Barry R Stripp Mircea Anghelescu Fabien G Eyal James C Parker 《Journal of applied physiology》2005,98(4):1264-1271
Lung vascular permeability is acutely increased by high-pressure and high-volume ventilation. To determine the roles of mechanically activated cytosolic PLA2 (cPLA2)and Clara cell secretory protein (CCSP), a modulator of cPLA2 activity, we compared lung injury with and without a PLA2 inhibitor in wild-type mice and CCSP-null mice (CCSP-/-) ventilated with high and low peak inflation pressures (PIP) for 2- or 4-h periods. After ventilation with high PIP, we observed significant increases in the bronchoalveolar lavage albumin concentrations, lung wet-to-dry weight ratios, and lung myeloperoxidase in both genotypes compared with unventilated controls and low-PIP ventilated mice. All injury variables except myeloperoxidase were significantly greater in the CCSP-/- mice relative to wild-type mice. Inhibition of cPLA2 in wild-type and CCSP-/- mice ventilated at high PIP for 4 h significantly reduced bronchoalveolar lavage albumin and total protein and lung wet-to-dry weight ratios compared with vehicle-treated mice of the same genotype. Membrane phospho-cPLA2 and cPLA2 activities were significantly elevated in lung homogenates of high-PIP ventilated mice of both genotypes but were significantly higher in the CCSP-/- mice relative to the wild-type mice. Inhibition of cPLA2 significantly attenuated both the phospho-cPLA2 increase and increased cPLA2 activity due to high-PIP ventilation. We propose that mechanical activation of the cPLA2 pathway contributes to acute high PIP-induced lung injury and that CCSP may reduce this injury through inhibition of the cPLA2 pathway and reduction of proinflammatory products produced by this pathway. 相似文献
93.
94.
95.
Lateral roots are crucial for the plasticity of root responses to environmental conditions in soil. The bacterivorous microfauna has been shown to increase root branching and to foster auxin producing soil bacteria. However, information on modifications of plant internal auxin content by soil bacteria and bacterivores is missing. Therefore, the effects of a rhizosphere bacterial community and a common soil amoeba (Acanthamoeba castellanii) on root branching and on auxin (indole-3-acetic acid) metabolism in Lepidium sativum and Arabidopsis thaliana were investigated. In a first experimental series, bacteria increased conjugated auxin concentrations in L. sativum shoots, but did not alter free bioactive auxin content nor root branching. In contrast, in presence of soil bacteria plus amoebae free auxin concentrations in shoots and root branching increased, demonstrating that effects of bacteria on auxin metabolism in plants were strongly modified by the bacterivorous amoebae. In a second experiment, A. thaliana reporter plants for auxin (DR5) and cytokinin (ARR5) responded similarly with increased root branching in the presence of amoebae. Surprisingly, in reporter plants cytokinin but not auxin responses were detectable, accompanied by higher soil nitrate concentrations in the presence of amoebae. Likely, increased nitrate concentrations in the rhizosphere led to an accumulation of cytokinin and interactions with free auxin in plants and finally to increased root growth in the presence of amoebae. Altogether, the results show that mutual control mechanisms exist between plant hormone metabolism and microbial signalling, and that effects on hormonal concentrations of plants by free-living bacteria are strongly influenced by bacterial grazers like amoebae. 相似文献
96.
Kathleen Mahias Neveen Ahmed-El-Sayed Cyril Masante Juliette Bitard Cathy Staedel Fabien Darfeuille Michel Ventura Thérèse Astier-Gin 《Nucleic acids research》2010,38(12):4079-4091
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells. 相似文献
97.
Rhomboids are serine proteases that cleave their substrates within the transmembrane domain. Toxoplasma gondii contains six rhomboids that are expressed in different life cycle stages and localized to different cellular compartments. Toxoplasma rhomboid protein 1 (TgROM1) has previously been shown to be active in vitro, and the orthologue in Plasmodium falciparum processes the essential microneme protein AMA1 in a heterologous system. We investigated the role of TgROM1 to determine its role during in vitro growth of T. gondii. TgROM1 was localized in the secretory pathway of the parasite, including the Golgi apparatus and micronemes, which contain adhesive proteins involved in invasion of host cells. However, unlike other micronemal proteins, TgROM1 was not released onto the parasite surface during cell invasion, suggesting it does not play a critical role in cell invasion. Suppression of TgROM1 using the tetracycline-regulatable system revealed that ROM1-deficient parasites were outcompeted by wild-type T. gondii. ROM1-deficient parasites showed only modest decrease in invasion but replicated more slowly than wild-type cells. Collectively, these results indicate that ROM1 is required for efficient intracellular growth by T. gondii. 相似文献
98.
99.
Sordel T Garnier-Raveaud S Sauter F Pudda C Marcel F De Waard M Arnoult C Vivaudou M Chatelain F Picollet-D'hahan N 《Journal of biotechnology》2006,125(1):142-154
Obtaining high-throughput electrophysiological recordings is an ongoing challenge in ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase throughput. However, successful patch-clamp recordings depend on a surface coating which ideally should promote and stabilize giga-seal formation. Here, we present data supporting the use of a structured SiO(2) coating to improve the ability of cells to form a "seal" with a planar patch-clamp substrate. The method is based on a correlation study taking into account structure and size of the pores, surface roughness and chip capacitance. The influence of these parameters on the quality of the seal was assessed. Plasma-enhanced chemical vapour deposition (PECVD) of SiO(2) led to an hourglass structure of the pore and a tighter seal than that offered by a flat, thermal SiO(2) surface. The performance of PECVD chips was validated by recording recombinant potassium channels, BK(Ca), expressed in stable HEK-293 cell lines and in inducible CHO cell lines and low conductance IRK1, and endogenous cationic currents from CHO cells. This multiparametric investigation led to the production of improved chips for planar patch-clamp applications which allow electrophysiological recordings from a wide range of cell lines. 相似文献
100.
Cremona Fabien Laas Alo Hanson Paul C. Sepp Margot Nõges Peeter Nõges Tiina 《Ecosystems》2019,22(4):805-817
Ecosystems - We assessed the allochthonous organic carbon (OC) budgets for thirteen hemiboreal lakes using a simple equilibrium model coupled with a Bayesian framework for estimating parameter... 相似文献