首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6031篇
  免费   564篇
  国内免费   2篇
  2022年   54篇
  2021年   117篇
  2020年   63篇
  2019年   67篇
  2018年   78篇
  2017年   60篇
  2016年   134篇
  2015年   266篇
  2014年   262篇
  2013年   388篇
  2012年   484篇
  2011年   441篇
  2010年   258篇
  2009年   210篇
  2008年   372篇
  2007年   384篇
  2006年   322篇
  2005年   275篇
  2004年   280篇
  2003年   275篇
  2002年   276篇
  2001年   68篇
  2000年   42篇
  1999年   57篇
  1998年   86篇
  1997年   53篇
  1996年   50篇
  1995年   40篇
  1994年   54篇
  1993年   43篇
  1992年   35篇
  1991年   31篇
  1990年   43篇
  1989年   34篇
  1988年   33篇
  1986年   29篇
  1985年   38篇
  1984年   37篇
  1983年   40篇
  1982年   41篇
  1981年   41篇
  1980年   33篇
  1978年   27篇
  1977年   25篇
  1976年   33篇
  1975年   29篇
  1974年   28篇
  1973年   27篇
  1972年   24篇
  1969年   25篇
排序方式: 共有6597条查询结果,搜索用时 15 毫秒
71.
Ghosts prepared in CO2-saturated water from unwashed human red cells can be fragmented mechanically, but ghosts from thrice washed cells cannot. If the ghosts are prepared by freezing and thawing, this difference is not observed. The electrophoretic velocity varies also with the way in which the ghosts are prepared. The pH-mobility dependence of washed red cells flatten off to a plateau at pH 9, and the electrophoretic velocity is zero at about pH 2. Ghosts prepared by freezing and thawing have almost the same pH-mobility dependence, but if the ghosts are prepared in CO2-saturated hyptonic saline, the mobility at pH 9.4 is 0.75 times that of washed cells. Fragments of ghosts of unwashed red cells have a smaller mobility than that of the red cells. Trypsin reduces the mobility of washed red cells and of ghosts. Sols of lipid complexes (lecithin, cephalin, and lipositol), at varying pH's, have a mobility 1.2 times that of the washed red cell. The pH-mobility relation is otherwise similar. These complexes can be coated with dextran and trypsin.  相似文献   
72.
73.
Whole-cell hydrolysates were prepared from 58 strains of nocardiae and streptomycetes. Strains morphologically intermediate between the two genera and morphological variants of the same strains were included. Paper chromatograms made from the whole-cell hydrolysates clearly demonstrated meso-diaminopimelic acid as a major constituent of cultures of Nocardia spp., and LL-diaminopimelic acid as a major constituent of cultures of Streptomyces spp. In cultures of ten strains of N. madurae and of three of N. pelletieri, meso-diaminopimelic acid predominated, thereby supporting the assignment of these species to the genus Nocardia.  相似文献   
74.
75.
Summary Three non-chromosomal and two chromosomal genes which influence resistance to streptomycin are described. Each of the non-chromosomal factors,sr-500,sr-1500, andsd, exhibits uniparental inheritance, with all progeny receiving the factor when it is carried by the parent of mating-typeplus, and none when it is carried by the mating-typeminus parent. The streptomycin-dependence factor,sd, shows zygotic dominance when contributed by the mating-typeplus parent, but not when coming from the mating-typeminus parent, indicating that the uniparental transmission results from events occurring within the zygote early in maturation and well before meiosis. The chromosomal geneA interacts both with chromosomal and non-chromosomal genes at the biochemical level, but does not alter their patterns of inheritance.With 1 Figure in the TextThis paper is dedicated to ProfessorL. C. Dunn in gratitude to him as teacher and advisor, on the occasion of his retirement.This work was supported by grants from the U.S. Public Health Service and the National Science Foundation. The generosity and interest of ProfessorFrancis J. Ryan in providing laboratory space is gratefully acknowledged, as is the technical assistance of MissFran Yablonsky.  相似文献   
76.
Summary Structural gene mutants of the cell-surface glycoprotein acid phosphatase of Schizosaccharomyces pombe were analysed to define structural determinants that are responsible for enzymatic activity, N-glycosylation and secretion. All seven defined mutations cause a single amino acid substitution in the mature acid phosphatase protein and destroy the enzymatic activity. The mutational lesions are distributed throughout the pho1 gene. A ser to phe substitution at position 349 abolishes enzymatic activity only and does not affect glycosylation and secretion. Two mutations create a new N-glycosylation site by substitution of pro at position 56 by phe and ser, respectively. This new site is apparently used in the mutants. Their core-glycosylated acid phosphatase is slightly larger than that of the wild type. Overglycosylation seems not to affect secretion. Four different mutations (a gly to asp substitution at position 281 and ser to phe substitutions at positions 150, 271 and 277) cause intracellular accumulation of enzymatically inactive core-glycosylated acid phosphatase precursor. These mutational lesions apparently block transport of acid phosphatase from the endoplasmic reticulum to the Golgi apparatus.  相似文献   
77.
78.
79.
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP).  相似文献   
80.
Summary Fluorescence microscopy offers some distinct advantages over other techniques for studying ion transport processes in situ with plant cells. However, the use of this technology in plant cells has been limited by our lack of understanding the mechanisms that influence the subcellular distribution of dyes after loading with the lipophilic precursors. In this study, the subcellular distribution of 5-(and 6-)carboxydichlorofluorescein (CDCF), carboxy-SNAFL-1, and carboxy-SNARF-1 was compared to that of 2,7-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (BCECF) after incubation of maize roots with their respective lipophilic precursors. Previously, we reported that incubation of roots with BCECF-acetomethyl ester (BCECF-AM) led to vacuolar accumulation of this dye. Similar results were found when roots were incubated with CDCF-diacetate. In contrast, carboxy-SNAFL-1 appeared to be confined to the cytoplasm based on the distribution of fluorescence and the excitation spectra of the dye in situ. On the other hand, incubation of roots with carboxy-SNARF-1-acetoxymethyl acetate yielded fluorescence throughout the cell. When the cytoplasm of epidermal cells was loaded with the BCECF acid by incubation at pH 4 in the absence of external Ca, the dye was retained in the cytoplasm at least 3 h after the loading period. This result indicated that vacuolar accumulation of BCECF during loading of BCECF-AM was not due to transport of BCECF from cytoplasm to vacuole. The esterase activities responsible for the production of either carboxy-SNAFL-1 or BCECF from their respective lipophilic precursor by extracts of roots were compared. The characterization of esterase activities was consistent with the subcellular distribution of these dyes in root cells. The results of these experiments suggest that in maize root epidermal cells the subcellular distribution of these fluorescein dyes may be determined by the characteristics of the esterase activities responsible for hydrolysis of the lipophilic precursor.Abbreviations BCECF (BCECF-AM) 2,7-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (its acetoxymethyl ester) - BTB bis-trispropane - CDCF (CDCF-DA) 5-(and 6-)carboxy-2,7-dichlorofluorescein (its diacetate derivative) - DAPI 4,6-diamidino-2 phenylindole dihydrochloride - DMSO dimethylsulfoxide - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethane-sulfonic acid - SNAFL-1 (SNAFL-1-DA) carboxyl SNAFL-1 (its diacetate) - SNARF-1 (SNARF-1-AM) carboxyl SNARF-1 (its acetoxymethyl acetate)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号