首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   144篇
  1618篇
  2024年   2篇
  2023年   18篇
  2022年   27篇
  2021年   51篇
  2020年   45篇
  2019年   53篇
  2018年   40篇
  2017年   39篇
  2016年   74篇
  2015年   126篇
  2014年   109篇
  2013年   115篇
  2012年   161篇
  2011年   143篇
  2010年   71篇
  2009年   58篇
  2008年   82篇
  2007年   65篇
  2006年   57篇
  2005年   40篇
  2004年   41篇
  2003年   22篇
  2002年   34篇
  2001年   14篇
  2000年   11篇
  1999年   14篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1993年   5篇
  1992年   6篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1972年   2篇
  1971年   2篇
  1929年   1篇
排序方式: 共有1618条查询结果,搜索用时 15 毫秒
71.
Novel racemic indeno[1,2-e]pyrimido[4,5-b][1,4]diazepine-5,11-diones 3-29 were obtained regioselectivily from the reaction of 5,6-diamino-3,4-dihydropyrimidin-4-ones 1 and 2-arylideneindandiones 2 as reagents. These compounds have been evaluated at the US National Cancer Institute (NCI) for their ability to inhibit approximately 60 different human tumor cell lines, where 5 and 6 presented remarkable activity against 57 and 48 cancer cell lines, respectively, with the most important GI(50) values ranging from 0.49 to 1.46 microM, in vitro assay.  相似文献   
72.
2-Substituted derivatives of the antihistaminic agents Bamipine, Diphenylpyraline and of their 1-phenyl analogues were tested for their antimycobacterial and H(1)-antagonistic activities. They are strong H1-receptor antagonists and also inhibit the growth of mycobacterials with a maximum MIC of 6.25 microg/mL against Mycobacterium tuberculosis H(37)Rv. H1-receptor antagonistic potency was slightly decreased by substitution in ring position 2 and distinctly diminished by N-aryl substitution. The antimycobacterial potency of Diphenylpyraline was in general increased by substitution in ring position 2, whereas only a few Bamipine derivatives showed markedly improved activity. A correlation between the two activities was not detected for those compounds.  相似文献   
73.
The modulatory effect of 1,25-dihydroxyvitamin D3 (vit D) on the growth of myeloid progenitors and on the composition of the stromal layer in human bone marrow long-term cultures was studied. Vit D (2 X 10(-8) M) caused an enhancement in myeloid progenitor cell (CFU-C) growth in the nonadherent and adherent layers during the entire 5-week incubation period. The vitamin did not alter the differentiation pattern of CFU-C (monocyte-macrophage progenitors CFU-M, granulocytic progenitors CFU-G, or monocyte-granulocyte progenitors CFU-GM). Vit D caused a marked increase in the percentage of lipid-containing cells in the adherent layer and an increase in the number of cells that specifically bound My4 monoclonal antibody (McAb), that reacted positively to fluoride-sensitive alpha-naphthyl acetate esterase, and that phagocytosed Candida albicans (CA). Concentrated supernatants harvested from control cultures showed significant levels of myeloid colony stimulating factor (CSF) activity. The addition of vit D to cultures for 5 weeks did not alter CSF levels. These results suggest that vit D may play a role in hematopoiesis by acting directly on the progenitor cells or via the stromal cell production of stimulatory factor(s).  相似文献   
74.
Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA)-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716) during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.  相似文献   
75.
The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.  相似文献   
76.
Plasmodium falciparum multi-stage proteins are involved in vital processes for parasite survival, which turns them into attractive targets for studies aimed at developing a fully effective antimalarial vaccine. MCP-1 and PfSPATR are both found in sporozoite and merozoite forms, and have been associated respectively with invasion of hepatocytes and red blood cells (RBCs). Binding assays with synthetic peptides derived from these two important proteins have enabled identifying those sequences binding with high specific activity (named High activity binding peptides-HABPs) to hepatoma-derived HepG2 cells and human RBCs. Twelve RBC HABPs were identified within the MCP-1 amino acid sequence, most of them in the C-terminal region. The MCP-1 HABPs 33387 and 33397 also presented high activity binding to HepG2 cells. PfSPATR presented four RBC HABPs and two HepG2 HABPs, but only one (32686) could bind to both cell types. RBC binding assays evidenced that binding of all HABPs was saturable and differentially affected by the enzymatic treatment of target cells. Moreover, all HABPs inhibited in vitro invasion of merozoites at 200 microM and had particular structural features when analyzed by circular dichroism. The results suggest that these synthetic peptides capable of binding to the two P. falciparum target cells could be potentially included in the design of a multi-stage, subunit-based, chemically synthesized antimalarial vaccine.  相似文献   
77.
Neisseria meningitidis serogroup C is a major cause of bacterial meningitis and septicaemia. This human pathogen is protected by a capsule composed of alpha2,9-linked polysialic acid that represents an important virulence factor. In the majority of strains, the capsular polysaccharide is modified by O-acetylation at C-7 or C-8 of the sialic acid residues. The gene encoding the capsule modifying O-acetyltransferase is part of the capsule gene complex and shares no sequence similarities with other proteins. Here, we describe the purification and biochemical characterization of recombinant OatC. The enzyme was found as a homodimer, with the first 34 amino acids forming an efficient oligomerization domain that worked even in a different protein context. Using acetyl-CoA as donor substrate, OatC transferred acetyl groups exclusively onto polysialic acid joined by alpha2,9-linkages and did not act on free or CMP-activated sialic acid. Motif scanning revealed a nucleophile elbow motif (GXS286XGG), which is a hallmark of alpha/beta-hydrolase fold enzymes. In a comprehensive site-directed mutagenesis study, we identified a catalytic triad composed of Ser-286, Asp-376, and His-399. Consistent with a double-displacement mechanism common to alpha/beta-hydrolase fold enzymes, a covalent acetylenzyme intermediate was found. Together with secondary structure prediction highlighting an alpha/beta-hydrolase fold topology, our data provide strong evidence that OatC belongs to the alpha/beta-hydrolase fold family. This clearly distinguishes OatC from all other bacterial sialate O-acetyltransferases known so far because these are members of the hexapeptide repeat family, a class of acyltransferases that adopt a left-handed beta-helix fold and assemble into catalytic trimers.  相似文献   
78.
Abstract: The excitatory neurotransmitter glutamate is believed to play important roles in development, synaptic plasticity, and neurodegenerative conditions. Recent studies have shown that neurotrophic factors can modulate neuronal excitability and survival and neurite outgrowth responses to glutamate, but the mechanisms are unknown. The present study tested the hypothesis that neurotrophic factors modulate responses to glutamate by affecting the expression of specific glutamate-receptor proteins. Exposure of cultured embryonic rat hippocampal cells to basic fibroblast growth factor (bFGF) resulted in a concentration-dependent increase in levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor subunit GluR1 protein as determined by western blot, dot-blot, and immunocytochemical analyses. In contrast, bFGF did not alter levels of GluP2/3, GluR4, or the NMDA-receptor subunit NR1. Nerve growth factor did not affect GluR1 levels. Calcium-imaging studies revealed that elevation of [Ca2+]i, resulting from selective AMPA-receptor activation, was enhanced in bFGF-pretreated neurons. On the other hand, [Ca2+]i responses to NMDA-receptor activation were suppressed in bFGF-treated neurons, consistent with previous studies showing that bFGF can protect neurons against NMDA toxicity. Moreover, neurons pretreated with bFGF were relatively resistant to the toxicities of glutamate and AMPA, both of which were shown to be mediated by NMDA receptors. These data suggest that differential regulation of the expression of specific glutamate-receptor subunits may be an important mechanism whereby neurotrophic factors modulate activity-dependent neuronal plasticity and vulnerability to excitotoxicity.  相似文献   
79.
During the period of December 2004 to January 2005, Bacillus anthracis killed three wild chimpanzees (Pan troglodytes troglodytes) and one gorilla (Gorilla gorilla gorilla) in a tropical forest in Cameroon. While this is the second anthrax outbreak in wild chimpanzees, this is the first case of anthrax in gorillas ever reported. The number of great apes in Central Africa is dramatically declining and the populations are seriously threatened by diseases, mainly Ebola. Nevertheless, a considerable number of deaths cannot be attributed to Ebola virus and remained unexplained. Our results show that diseases other than Ebola may also threaten wild great apes, and indicate that the role of anthrax in great ape mortality may have been underestimated. These results suggest that risk identification, assessment, and management for the survival of the last great apes should be performed with an open mind, since various pathogens with distinct characteristics in epidemiology and pathogenicity may impact the populations. An animal mortality monitoring network covering the entire African tropical forest, with the dual aims of preventing both great ape extinction and human disease outbreaks, will create necessary baseline data for such risk assessments and management plans.  相似文献   
80.
The essential bacterial membrane protein YidC facilitates insertion and assembly of proteins destined for integration into the inner membrane. It has homologues in both mitochondria and chloroplasts. Here we report the crystal structure of the Escherichia coli YidC major periplasmic domain (YidCECP1) at 2.5A resolution. This domain is present in YidC from Gram-negative bacteria and is more than half the size of the full-length protein. The structure reveals that YidCECP1 is made up of a large twisted beta-sandwich protein fold with a C-terminal alpha-helix that packs against one face of the beta-sandwich. Our structure and sequence analysis reveals that the C-terminal alpha-helix and the beta-sheet that it lays against are the most conserved regions of the domain. The region corresponding to the C-terminal alpha-helix was previously shown to be important for the protein insertase function of YidC and is conserved in other YidC-like proteins. The structure reveals that a region of YidC that was previously shown to be involved in binding to SecF maps to one edge of the beta-sandwich. Electrostatic analysis of the molecular surface for this region of YidC reveals a predominantly charged surface and suggests that the SecF-YidC interaction may be electrostatic in nature. Interestingly, YidCECP1 has significant structural similarity to galactose mutarotase from Lactococcus lactis, suggesting that this domain may have another function besides its role in membrane protein assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号