The involvement of MLH1 in several mismatch repair‐independent cellular processes has been reported. In an attempt to gain further insight into the protein's cellular functions, we screened for novel interacting partners of MLH1 utilizing a bacterial two‐hybrid system. Numerous unknown interacting proteins were identified, suggesting novel biological roles of MLH1. The network of MLH1 and its partner proteins involves a multitude of cellular processes. Integration of our data with the “General Repository for Interaction Datasets” highlighted that MLH1 exhibits relationships to three interacting pairs of proteins involved in cytoskeletal and filament organization: Thymosin β 4 and Actin γ, Cathepsin B and Annexin A2 as well as Spectrin α and Desmin. Coimmunoprecipitation and colocalization experiments validated the interaction of MLH1 with these proteins. Differential mRNA levels of many of the identified proteins, detected by microarray analysis comparing MLH1‐deficient and ‐proficient cell lines, support the assumed interplay of MLH1 and the identified candidate proteins. By siRNA knock down of MLH1, we demonstrated the functional impact of MLH1–Actin interaction on filament organization and propose that dysregulation of MLH1 plays an essential role in cytoskeleton dynamics. Our data suggest novel roles of MLH1 in cellular organization and colorectal cancerogenesis. 相似文献
The purpose of this work is to study the molecular association that occurs between 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole (RCB20), an antiparasitic compound recently found by our research group, with poor aqueous solubility. The complex stability constant and stoichiometric ratio determined by phase-solubility diagram and Job's plot provided evidence that HPβCD enhanced water solubility of RCB20 through inclusion complex formation. Two-dimensional 1H NMR spectroscopy is used to study the molecular arrangement of inclusion complex in solution. These results are further supported using molecular modeling studies. In the solid state, the complexation is confirmed by differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy. Finally, RCB20/HPβCD complex has better activity than RCB20 against the adult and muscle larvae phase of Trichinella spiralis. 相似文献
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.
Hematopoietic stem cells (HSCs) are rare quiescent cells that continuously replenish the cellular components of the peripheral blood. Observing that the ataxia-associated gene Ataxin-1-like (Atxn1L) was highly expressed in HSCs, we examined its role in HSC function through in vitro and in vivo assays. Mice lacking Atxn1L had greater numbers of HSCs that regenerated the blood more quickly than their wild-type counterparts. Molecular analyses indicated Atxn1L null HSCs had gene expression changes that regulate a program consistent with their higher level of proliferation, suggesting that Atxn1L is a novel regulator of HSC quiescence. To determine if additional brain-associated genes were candidates for hematologic regulation, we examined genes encoding proteins from autism- and ataxia-associated protein–protein interaction networks for their representation in hematopoietic cell populations. The interactomes were found to be highly enriched for proteins encoded by genes specifically expressed in HSCs relative to their differentiated progeny. Our data suggest a heretofore unappreciated similarity between regulatory modules in the brain and HSCs, offering a new strategy for novel gene discovery in both systems. 相似文献
To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena. 相似文献
The conformational properties of streptokinase (Sk) have been assessed by several spectroscopic techniques. A solvent accessibility of about 70% of the 22 Tyr residues was found by u.v. perturbation spectroscopy. Fluorescence spectroscopy indicates also the surface localization of the single Trp 6 residue. Circular dichroism (c.d.), infrared (i.r.), and Raman spectra were analysed in order to estimate the contents of secondary structure elements of Sk. Values in the range of 14-23% alpha-helices, 38-46% beta-structures, 10-30% turns and 12-23% residual structures were found. The characteristics of the c.d. spectrum support the classification of Sk as an alpha + beta protein. Effects of temperature, pH, and denaturants were studied by c.d. spectroscopy, and on spin-labelled Sk, by e.p.r. spectroscopy. Structural effects were induced at temperatures above 40 degrees C, pH values below 3.0 and urea concentrations above 2 M. At temperatures above 70 degrees C, at pH 2.1, and at urea and Gu.HCl concentrations of 7 M and 5 M, respectively, no further structural changes are revealed in the spectra. At temperatures around 50 degrees C, at pH 3.0, and denaturant concentrations of about 1 M Gu.HCl and 1 M to 2 M urea, c.d. effects were observed in the near-u.v. region indicating an increase in the asymmetry for aromatic amino acids in comparison with the structure of Sk in low ionic strength buffers at neutral pH, 20 degrees C and in the absence of denaturants. These effects were most pronounced for the temperature dependence of the c.d. spectra. E.p.r. spectroscopy has shown that loosening of the protein surrounding of the spin label already begins at 1 M urea and that the mobility of the spin label points to a structural change in Sk at 46 degrees C. 相似文献