首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1435篇
  免费   142篇
  2024年   2篇
  2023年   13篇
  2022年   25篇
  2021年   51篇
  2020年   45篇
  2019年   53篇
  2018年   40篇
  2017年   39篇
  2016年   74篇
  2015年   126篇
  2014年   108篇
  2013年   114篇
  2012年   158篇
  2011年   138篇
  2010年   71篇
  2009年   57篇
  2008年   76篇
  2007年   63篇
  2006年   56篇
  2005年   39篇
  2004年   40篇
  2003年   22篇
  2002年   33篇
  2001年   11篇
  2000年   6篇
  1999年   13篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1993年   4篇
  1992年   6篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1972年   2篇
  1971年   2篇
  1929年   1篇
排序方式: 共有1577条查询结果,搜索用时 31 毫秒
101.
102.
To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.  相似文献   
103.
Highlights? AtBMI1A/B proteins prevent misexpression of embryonic traits in somatic cells ? PRC2 and AtBMI1A/B proteins maintain cells in their differentiated state ? AtBMI1A/B proteins mediate H2A monoubiquitination  相似文献   
104.
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains W22703 (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contrast to that by Yersinia pestis and Yersinia pseudotuberculosis strains, is biofilm independent. The deletion of tcaA encoding an insecticidal toxin resulted in an OP50-like life span of C. elegans, indicating an essential role of TcaA in the nematocidal activity of Y. enterocolitica. TcaA alone is not sufficient for nematocidal activity because E. coli DH5α overexpressing TcaA did not result in a reduced C. elegans life span. Spatial-temporal analysis of C. elegans infected with green fluorescent protein-labeled Y. enterocolitica strains showed that Y. enterocolitica colonizes the nematode intestine, leading to an extreme expansion of the intestinal lumen. By low-dose infection with W22703 or DH5α followed by transfer to E. coli OP50, proliferation of Y. enterocolitica, but not E. coli, in the intestinal lumen of the nematode was observed. The titer of W22703 cells within the worm increased to over 106 per worm 4 days after infection while a significantly lower number of a tcaA knockout mutant was recovered. A strong expression of tcaA was observed during the first 5 days of infection. Y. enterocolitica WA314 (biovar 1B, serovar O:8) mutant strains lacking the yadA, inv, yopE, and irp1 genes known to be important for virulence in mammals were not attenuated or only slightly attenuated in their toxicity toward the nematode, suggesting that these factors do not play a significant role in the colonization and persistence of this pathogen in nematodes. In summary, this study supports the hypothesis that C. elegans is a natural host and nutrient source of Y. enterocolitica.Yersinia enterocolitica belongs to the family of Enterobacteriaceae and is a psychrotolerant human pathogen that causes gastrointestinal syndromes ranging from acute enteritis to mesenteric lymphadenitis (5). It infects a number of mammals, and swine was identified as a major source for human infection (6). A multiphasic life cycle, which comprises a free-living phase and several host-associated phases, including cold-blooded and warm-blooded hosts, appears to be characteristic for biovars 1B and 2 to 5 of Y. enterocolitica (7, 24).Nonmammalian host organisms including Dictyostelium discoideum, Drosophila melanogaster, or Caenorhabditis elegans are increasingly used to study host-pathogen interactions (16, 26). Due to the obvious parallels between the mammalian and invertebrate defense mechanisms, it has been suggested that the bacteria-invertebrate interaction has shaped the evolution of microbial pathogenicity (53). Several human pathogens including Gram-positive and Gram-negative bacteria infect and kill the soil nematode C. elegans when they are supplied as a nutrient source (42). For example, Streptococcus pneumoniae (4), Listeria monocytogenes (50), extraintestinal Escherichia coli (15), and Staphylococcus aureus (43) but not Bacillus subtilis have been shown to kill the nematode. Upon infection of C. elegans with Enterococcus faecalis, Gram-positive virulence-related factors as well as putative antimicrobials have been identified (20, 35). The extensive conservation in virulence mechanisms directed against invertebrates as well as mammals was demonstrated using a screen with Pseudomonas aeruginosa (30). In this study, 10 of 13 genes whose knockout attenuated the nematode killing were also required for full virulence in a mouse model, confirming the suitability of the C. elegans model to study bacterial pathogenicity. C. elegans is also colonized by Salmonella enterica serovar Typhimurium (S. Typhimurium). This process requires Salmonella virulence factors and was used to study the innate immune response of the nematode (1, 2, 49).The effect of pathogenic Yersinia spp. on C. elegans has also been investigated. It could be demonstrated that both Yersinia pestis and Yersinia pseudotuberculosis block food intake by creating a biofilm around the worm''s mouth (13, 27). This biofilm formation requires the hemin storage locus (hms) and has been suggested to be responsible for the blockage of the digestive tract following uptake by fleas, thus acting as a bacterial defense against predation by invertebrates. In a study with 40 Y. pseudotuberculosis strains, one-quarter of them caused an infection of C. elegans by biofilm formation on the worm head (27). In contrast, a similar effect was not observed following nematode infection with 15 Y. enterocolitica strains. Using a Y. pestis strain lacking the hms genes, it could be demonstrated that this mutant can infect and kill the nematode by a biofilm-independent mechanism that includes the accumulation of Y. pestis in the intestine of the worm (47). This pathogenesis model was applied to show that putative virulence factors such as YapH, OmpT, or a metalloprotease, Y3857, but not the virulence plasmids pCD1 and pPCP1, are required for Y. pestis virulence in C. elegans. Six yet unknown genes required for full virulence in C. elegans were also identified, and one of them appeared to be a virulence factor in the mouse infection model.C. elegans has not been used to study the pathogenicity properties of Y. enterocolitica, mainly due to the fact that many of its virulence factors are upregulated at 37°C in comparison to growth at lower temperatures while C. elegans cannot be cultivated at temperatures above 25°C. In this study, we examined for the first time the infection of C. elegans by Y. enterocolitica strains, demonstrating that this pathogen colonizes and kills C. elegans and that the insecticidal toxin TcaA, which is expressed only at ambient temperature, is required for full nematocidal activity.  相似文献   
105.
Limited proteolysis of streptokinase (Sk) by trypsin and thermolysin was performed under various incubation conditions and analysed by polyacrylamide gel electrophoresis. Several fragments (Sk1, Tr27, Tr17, Th26, and Th16) were isolated and characterized further. The N-terminal sequences of Tr27, Tr17, Th26, Th16 and the C-terminal sequences of Tr27 and Th26 were determined by partial sequencing. The evidence available allows the positioning of these fragments within the Sk sequence. Fragment Sk1 is obtained by carefully standardized tryptic digestion of Sk and gel chromatography under non-denaturing conditions. Sk1 is formed by a large polypeptide Ser60-Lys293 and non-covalently bonded smaller polypeptides composed of amino acids from the N-terminal region Ile1-Lys59 of Sk. Fragment Tr27 consists of the large polypeptide Ser60-Lys293 of Sk1, and can be obtained from Sk1 by removal of the smaller N-terminal polypeptides under denaturing conditions. Fragment Th26 is composed of amino acids Phe63-His291. The N-termini of fragments Tr17 and Th16 start with Glu148 and Ile151. From their electrophoretically-determined sizes it can be concluded that they most probably have the same C-terminal amino acids, Lys293 and His291, as fragments Tr27 and Th26, respectively. Secondary structure elements of similar composition were found in all the fragments studied using circular dichroism (c.d.) and infrared (i.r.) measurements. Differential scanning calorimetric (d.s.c.) measurements were performed in order to correlate the sequence regions of Sk to energetic folding units of the protein. Fragments Sk1, Tr27, Th26, Tr17, and Th16 show one melting peak in the temperature range from 42.8 to 46.1 degrees C (thermal unfolding stage). For fragment Sk1, this melting peak can be separated by deconvolution into two transitions at T1 = 46.1 degree C and T2 = 47.3 degrees C with delta H1 = 450 kJ/mol and delta H2 = 219 kJ/mol, respectively. Fragments Tr17 and Th16 show one two-state transition at T = 42.8 degrees C with delta H = 326 kJ/mol.  相似文献   
106.
Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m-3 MPa-1, whereas outer parenchyma capacitance ranged from 25 to only 60 kg m-3 MPa-1. In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (gs) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees.  相似文献   
107.
Cell migration relies on a tight temporal and spatial regulation of the intracellular Ca2+ concentration ([Ca2+]i). [Ca2+]i in turn depends on Ca2+ influx via channels in the plasma membrane whose molecular nature is still largely unknown for migrating cells. A mechanosensitive component of the Ca2+ influx pathway was suggested. We show here that the capsaicin-sensitive transient receptor potential channel TRPV1, that plays an important role in pain transduction, is one of the Ca2+ influx channels involved in cell migration. Activating TRPV1 channels with capsaicin leads to an acceleration of human hepatoblastoma (HepG2) cells pretreated with hepatocyte growth factor (HGF). The speed rises by up to 50% and the displacement is doubled. Patch clamp experiments revealed the presence of capsaicin and resiniferatoxin (RTX)-sensitive currents. In contrast, HepG2 cells kept in the absence of HGF are not accelerated by capsaicin and express no capsaicin- or RTX-sensitive current. The TRPV1 antagonist capsazepine prevents the stimulation of migration and inhibits capsaicin-sensitive currents. Finally, we compared the contribution of capsaicin-sensitive TRPV1 channels to cell migration with that of mechanosensitive TRPV4 channels that are also expressed in HepG2 cells. A specific TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, does not increase the displacement. In summary, we assigned a novel role to capsaicin-sensitive TRPV1 channels. They are important Ca2+ influx channels required for cell migration.  相似文献   
108.
109.
1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.  相似文献   
110.
How to effectively mix small volumes of liquids within microplate wells is a still underestimated and often neglected challenge. The method the authors introduce here relies on violent turbulent motion within a liquid caused by spotting an organic solvent drop onto its surface. The amount needed, less than 1 to 3 microL, is generally small enough not to alter bioactive molecules. Moreover, a solvent may be selected for its compatibility with assay components. The method was tested with layers of aqueous liquids that differ in pH and concentration of a pH-dependent dye, allowing mixing to be monitored optically. Rapid mixing was caused by spotting drops of alcohols, acetone, acetonitrile, and aqueous solutions of these, as long as the difference of surface tension between the drop and the uppermost layer of the bulk liquid surpassed 30 dynes/cm. Along with this difference, position and velocity of spotting, as well as viscosity and geometry of the bulk liquid volume, may influence the turbulence evoked. No significant difference was found for the activity of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase when measured after mixing by shaking and after mixing by spotting 1 microL of methanol onto assays within 96-well microplates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号