首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   12篇
  128篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   13篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1969年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
51.
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.  相似文献   
52.
Benzothiazole derivatives 1-26 have been synthesized and their in vitro β-glucuronidase potential has been evaluated. Compounds 4 (IC(50)=8.9 ± 0.25 μM), 5 (IC(50)=36.1 ± 1.80 μM), 8 (IC(50)=8.9 ± 0.38 μM), 13 (IC(50)=19.4 ± 1.00 μM), 16 (IC(50)=4.23 ± 0.054 μM), and 18 (IC(50)=2.26 ± 0.06 μM) showed β-glucuronidase activity potent than the standard (d-saccharic acid 1,4-lactone, IC(50)=48.4 ± 1.25 μM). Compound 9 (IC(50)=94.0 ± 4.16 μM) is found to be the least active among the series. All active analogs were also evaluated for cytotoxicity and none of the compounds showed any cytotoxic effect. Furthermore, molecular docking studies were performed using the gold 3.0 program to investigate the binding mode of benzothiazole derivatives. This study identifies a novel class of β-glucuronidase inhibitors.  相似文献   
53.
Fibroadenoma is the most common type of benign breast tumor, accounting for 90% of benign lesions in India. Somatic mutations in the mediator complex subunit 12 (MED12) gene play a critical role in fibroepithelial tumorigenesis. The current study evaluated the hotspot region encompassing exon 2 of the MED12 gene, in benign and malignant breast tumor tissue from women who presented for breast lump evaluation. A total of 100 (80 fibroadenoma and 20 breast cancer) samples were analyzed by polymerase chain reaction-Sanger sequencing. Sequence variant analysis showed that 68.75% of nucleotide changes were found in exon 2 and the remaining in the adjacent intron 1. Codon 44 was implicated as a hotspot mutation in benign tumors, and 86.36% of the identified mutations involved this codon. An in silico functional analysis of missense mutations using consensus scoring sorting intolerant from tolerant (SIFT), SIFT seq, Polyphen2, Mutation Assessor, SIFT transFIC, Polyphen2 transFIC, Mutation Assesor transFIC, I-Mutant, DUET, PON-PS, SNAP2, and protein variation effect analyzer] revealed that apart from variants involving codon 44 (G44S; G44H), others like V41A and E55D were also predicted to be deleterious. Most of the missense mutations appeared in the loop region of the MED12 protein, which is expected to affect its functional interaction with cyclin C–CDK8/CDK19, causing loss of mediator-associated cyclin depended kinase (CDK) activity. These results suggest a key role of MED12 somatic variations in the pathogenesis of fibroadenoma. For the first time, it was demonstrated that MED12 sequence variations are present in benign breast tumors in the south Indian population.  相似文献   
54.
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.  相似文献   
55.
Biotin-binding antibodies were raised in rabbits by injecting biotin-bovine serum albumin conjugate. Neither the protomer nor the polymer of rat mammary-gland acetyl-CoA carboxylase formed precipitin bands with the anti-biotin. By virtue of its ability to bind biotin (apparent binding constant for free biotin about 1mum), the anti-biotin inhibited the carboxylase activity under certain conditions. This property of the antibody was employed to detect the ligand-induced changes affecting the biotinyl group in different conformational states of mammalian carboxylase. Depending on the ligand present, the biotinyl group in the protomeric form was either accessible or inaccessible to the antibody. The biotinyl group of the protomer generated by a relatively high concentration of NaCl (0.5m) reacted with the antibody, and the antibody-carboxylase complex could not be converted into active enzyme by citrate. Further experiments showed that citrate failed to induce polymerization in this protomer-antibody complex and that anti-biotin could be displaced rapidly from this complex with excess of biotin. The resulting protomer was converted into the polymeric state on citrate addition, with parallel regain of enzyme activity. In the presence of ADP+Mg(2+), ATP+Mg(2+) or ATP+Mg(2+)+HCO(3) (-), however, the enzyme remained as a protomer, but its configuration was such that the biotinyl group was essentially inaccessible to the antibody. Likewise, the biotinyl group of the different polymeric forms of the carboxylase (s approximately 30-45S) engendered by phosphate, malonyl-CoA, acetyl-CoA or citrate remained essentially inaccessible, since their activity was minimally affected by the anti-biotin. In the presence of 0.15m-NaCl, the phosphate-induced polymer reverted to a approximately 19S form with concomitant appearance of anti-biotin-sensitivity, whereas the other polymeric forms remained unaffected under similar experimental conditions.  相似文献   
56.
In the present study we determined the association of angiotensin converting enzyme (ACE) and plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms with diabetic retinopathy (DR) and its sub-clinical classes in Pakistani type 2 diabetic patients. A total of 353 diabetic subjects including 160 DR and 193 diabetic non retinopathy (DNR) as well as 198 healthy controls were genotyped by allele specific polymerase chain reaction (PCR) for ACE Insertion/Deletion (ID) polymorphism, rs4646994 in intron 16 and PAI-1 4G/5G (deletion/insertion) polymorphism, rs1799768 in promoter region of the gene. To statistically assess the genotype-phenotype association, multivariate logistic regression analysis was applied to the genotype data of DR, DNR and control individuals as well as the subtypes of DR. The ACE genotype ID was found to be significantly associated with DR (p = 0.009, odds ratio (OR) 1.870 [95% confidence interval (CI) = 1.04–3.36]) and its sub-clinical class non-proliferative DR (NPDR) (p = 0.006, OR 2.250 [95% CI = 1.098–4.620]), while PAI polymorphism did not show any association with DR in the current cohort. In conclusion in Pakistani population the ACE ID polymorphism was observed to be significantly associated with DR and NPDR, but not with the severe form of the disease i.e. proliferative DR (PDR).  相似文献   
57.
58.
Mantle cell lymphoma (MCL) is a haematologic malignancy. The proteasome inhibitor (PI) bortezomib has been approved to treat MCL, but resistance has emerged through mechanisms that remain unclear. This study aimed to explore the mechanism of PI resistance in MCL and identify new targets for this patient subgroup. Carfilzomib-resistant (CR) MCL cell lines and primary samples were used for both in vitro and in vivo experiments to identify gene expression and explore their related signalling pathways. We first identified mucin 20 (MUC20) suppression in carfilzomib-resistant MCL models. MUC20 overexpression sensitized cells to carfilzomib in vitro and in vivo. MUC20 expression was inversely related to activation of c-Met and the downstream p44/42 MAPK pathway. c-Met activation with hepatocyte growth factor (HGF) induced PI resistance, while c-Met inhibition restored PI sensitivity. Carfilzomib resistance and depressed MUC20 expression were associated with enhanced proteasome activity and higher expression of proteassemblin (POMP), a chaperone for catalytically active proteasome assembly. c-Met and POMP were associated through binding and induction of MAPK-regulated ELK1 to the POMP promoter. Our data reveal that c-Met signalling activation enhanced proteasome capacity as a mechanism of PI resistance, and MUC20 expression may be a useful biomarker for PI therapy.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号